
VISITING PEBBLES ON RECTANGULAR GRIDS
Coordinating Multiple Robots in Mobile Fulfilment Systems

by

Cornelis Francois van Eeden

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering

in the

Department of Mechanical Systems Engineering

Faculty of Engineering

UNIVERSITY OF MIYAZAKI

September 2017

ABSTRACT

VISITING PEBBLES ON RECTANGULAR GRIDS
Coordinating Multiple Robots in Mobile Fulfilment Systems

by

Cornelis Francois van Eeden

Supervisor: Associate Professor Geunho Lee, Ph.D.

Department: Mechanical Systems Engineering

University: University of Miyazaki

Degree: Master of Engineering

Keywords: Pebble Motion on Graphs, Multi-Agent Path Finding, Starvation-

freedom, Mobile Fulfilment Systems, Automatic Guided Vehicle

Over the past decade, the application of multi-robot systems to e-commerce distribution centres for pick

and pack operations has become a billion dollar business. Multi-agent path finding and coordination is

one of the key performance affecting sub-systems of the overall robotic order fulfilment process. The

purpose of multi-agent path finding and motion coordination is to plan and coordinate the motions

of multi-vehicle systems such that all vehicles reach their assigned goals safely. Much research has

focussed on solving the multi-agent path finding problem in a general way. As a result, researchers

have considered a system wide goal state where all vehicles are at their goal destinations in some final

time. In this work, an algorithm is designed specifically for order fulfilment in e-commerce. Though

the algorithm is designed for order fulfilment, it is generally applicable to point-to-point transport

in autonomous multi-vehicle systems. In point-to-point transport, all robots do not necessarily need

to be at their destination locations in the same final time. This is the key assumption of this work.

Designing the algorithm based on the correct assumptions for its application domain allows for an

elegant solution. The resulting solution is referred to as the visiting pebble motion on rectangular

grids. The algorithm is efficient and analytical performance guarantees are given. More specifically,

an asynchronous, starvation-free, semi-decentralized, scalable multi-agent path finding algorithm is

presented. This thesis takes an incremental approach to developing the solution, starting with a high

level of abstraction and gradually progressing to a low level so as to facilitate industrial adoption.

As a result, the final algorithm takes the constraints of real robot dynamics and collision avoidance

into account and is capable of operating under asynchronous conditions while providing analytical

performance guarantees.

TABLE OF CONTENTS

ABSTRACT . i

LIST OF ABBREVIATIONS . vi

MATHEMATICAL SYMBOLS & NOTATION . vii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xi

1 INTRODUCTION . 1

1.1 PROBLEM STATEMENT AND OVERVIEW . 1

1.2 THESIS OBJECTIVES . 2

1.3 THESIS CONTRIBUTIONS . 2

1.4 THESIS OUTLINE . 3

2 LITERATURE STUDY . 5

2.1 INTRODUCTION . 5

2.2 CHAPTER OBJECTIVES . 5

2.3 THE MOBILE FULFILMENT SYSTEM . 6

2.4 ALPHABET SOUP AND POSSIBLE RESEARCH DIRECTIONS 10

2.5 SCOPE . 12

2.6 COORDINATING MOTION IN MOBILE FULFILMENT SYSTEMS 12

2.6.1 Resource Allocation Approaches . 12

2.6.2 Multi-Agent Path Finding . 15

2.6.3 Adaptive Highways on a Grid . 18

2.7 RESEARCH GAP . 19

3 THE 15 PUZZLE WITH VISITORS’ RULES . 21

3.1 INTRODUCTION . 21

3.2 MFS MOTION COORDINATION REQUIREMENTS 21

3.3 VISITORS’ RULES . 22

3.4 PROBLEM STATEMENT . 23

3.5 PROPOSED SOLUTION . 23

3.6 IMPLEMENTATION . 24

3.7 RESULTS AND DISCUSSION . 27

3.7.1 Text-based simulation environment . 27

3.7.2 Complexity and completeness . 28

3.7.3 Results . 30

3.7.4 Discussion . 30

3.8 CONCLUSION . 31

4 EXTENSION TO MULTIPLE SWAP SPACES . 32

4.1 PROBLEM STATEMENT . 32

4.2 PROPOSED SOLUTION . 32

4.3 RESULTS . 33

4.4 DISCUSSION . 36

4.5 CONCLUSION . 37

5 PARALLEL EXECUTION . 38

5.1 INTRODUCTION . 38

5.2 PROBLEM STATEMENT . 38

5.3 PROPOSED SOLUTION . 38

5.4 IMPLEMENTATION . 40

5.5 RESULTS . 41

5.6 DISCUSSION . 49

5.7 CONCLUSION . 51

6 ASYNCHRONOUS EXECUTION . 52

6.1 INTRODUCTION . 52

6.2 PROBLEM STATEMENT . 53

6.3 PROPOSED SOLUTION . 53

6.4 IMPLEMENTATION . 55

6.5 STARVATION-FREEDOM . 62

6.6 RESULTS AND DISCUSSION . 64

6.7 CONCLUSION . 69

7 CONCLUSION . 71

7.1 SUMMARY . 71

7.2 GUARANTEES AND LIMITATIONS . 71

7.3 INTENDED USE . 72

7.4 APPLICABILITY . 72

7.5 FURTHER WORK . 72

REFERENCES . 74

ADDENDUM . 82

A ROTATIONS AND TRAIN-LIKE MOTIONS . 82

B COMPLEXITY ON RECTANGULAR GRIDS . 85

C COMPLEXITY ON MAPS COMPOSED OF RECTANGULAR GRIDS 87

D COMPLETENESS . 89

E TIME COMPLEXITY OF THE SERIES AND PARALLEL ALGORITHMS 90

E.1 TIME COMPLEXITY OF BFS . 90

E.2 TIME COMPLEXITY OF A∗ . 91

E.3 TIME COMPLEXITY OF THE SERIES VISITORS’ ALGORITHM 91

E.4 TIME COMPLEXITY OF THE PARALLEL VISITORS’ ALGORITHM 92

LIST OF ABBREVIATIONS

A∗ “A-star” path-finding algorithm

BFS Breadth First Search

CPF Cooperative Path Finding

GUI Graphical User Interface

MAPF Multi-Agent Path Finding

MFS Mobile Fulfilment System

MRPP Multi-Robot Path Planning

MVS Multi-Vehicle Systems

PMG Pebble Motion on Graphs

MATHEMATICAL SYMBOLS & NOTATION

Symbols:

A Required grid area

a Aspect ratio of a grid

ai Aspect ratio of si

c Number of moves associated with unblocking a robot’s path

D Diameter of a graph

di Diameter of si

E Edge set of a graph

fi Fraction of nodes contained in si

G A graph

g Asymptotic worst-case growth rate

gr Required moves to a robot from it’s current node to it’s destination node

h Height of a grid

k Number of robots on a graph

l Distance between adjacent nodes

N Number of nodes in a graph

ni Number of nodes on si

ns Number of rectangular sections in a map

nturns Number of required turns

oi Current node of ri

pi Goal node of ri

r Rotation envelope radius

ri Robot i

s Inter-robot separation distance

si Rectangular section i

V Vertex set of a graph

w Width of a grid

δ Distance from start node

ρ Traffic density

Operators:

A← B Assignment operator. The value of B is assigned to A

A→ B A implies B

f (·) “function of”

O(·) “Order of” / Big O class

w(·) “Waits for” relationship

| · | Cardinality of a set

{·} Set

LIST OF FIGURES

Figure 2.1 Components of the KIVA solution [40] . 7

Figure 2.2 The KIVA solution in motion . 7

Figure 2.3 Initial configuration of warehouse and robots in ALPHABET SOUP 10

Figure 2.4 Deadlocked configuration of warehouse and robots 13

Figure 2.5 The 15 puzzle board and its graph representation 16

Figure 2.6 Instances of the 15 puzzle . 17

Figure 3.1 Robot 1 plans its route and progresses by one move 26

Figure 3.2 Robot 1 completes its mission by intent . 27

Figure 3.3 Console window text-based output for the 15 puzzle with visitors’ rules . . . 29

Figure 3.4 Moves versus board size for the visitors’ h×h puzzle 30

Figure 4.1 Text-based output with multiple unoccupied spaces 35

Figure 4.2 Number of moves versus number of robots for different workspace sizes . . . 36

Figure 5.1 Parallel completion of missions for 3 robots 44

Figure 5.2 Comparison of series and parallel moves on a 12×12 workspace 45

Figure 5.3 Moves and turns on a 12×12 workspace for parallel execution 46

Figure 5.4 Moves per turn versus number of robots on a 12×12 workspace 47

Figure 5.5 Series and parallel run times on square grids with k = N−1 48

Figure 5.6 Comparison of turns on h×w workspaces for parallel execution 49

Figure 5.7 The effect of the aspect ratio on the number of moves/turns 50

Figure 6.1 Robot/node synchronization of states . 55

Figure 6.2 Robot state flow . 57

Figure 6.3 Robot waiting state . 57

Figure 6.4 Node control flow . 62

Figure 6.5 Various destination assignments successfully completed 65

Figure 6.6 GUI for cyclic mission completion with 30 robots on a 9×16 grid 67

Figure 6.7 Task number versus order of completion . 67

Figure 6.8 Cyclic mission completion in simulated continuous time 70

Figure A.1 Robots undergoing a rotation without space reservation 82

Figure A.2 Separation between two robots under simultaneous motion. 83

Figure A.3 Robots progressing along a graph cycle with space reservation. 84

Figure B.1 w×h grid and its diameter. 85

Figure C.1 A warehouse map composed of multiple rectangular grids 87

Figure D.1 Singly connected and biconnected graphs . 89

LIST OF ALGORITHMS

Algorithm 3.1 Solve . 25

Algorithm 3.2 Plan_swap . 25

Algorithm 3.3 Execute_swap . 25

Algorithm 4.1 Solve_multi . 34

Algorithm 4.2 Find_swap . 34

Algorithm 4.3 Execute_swap_multi . 35

Algorithm 5.1 Parallel_solve . 41

Algorithm 5.2 Propagate_intentions . 41

Algorithm 5.3 Make_requests . 42

Algorithm 5.4 Make_moves . 42

Algorithm 6.1 Plan_and_propagate . 58

Algorithm 6.2 Update_requested . 59

Algorithm 6.3 Granted . 60

Algorithm 6.4 Withdraw_requested . 60

Algorithm 6.5 Declined . 61

Algorithm 6.6 Grant_request . 63

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT AND OVERVIEW

In 2006, Kiva Systems introduced the first commercially implemented autonomous Multi-Vehicle

System (MVS) for pick and pack operations in e-commerce distribution centres (commonly referred

to as warehouses). Their solution is referred to as a Mobile Fulfilment System (MFS). At the time,

existing research in multi-agent systems did not satisfactorily address many of the problems they faced.

As a result, mostly “textbook implementations of standard algorithms” were used [2].

In recent times, many researchers have addressed the issue of multi-agent path finding, which is one

of the central components of MFS. The performance of a MFS is heavily dependent on the path

finding algorithms used. Though many researchers claim that their work is applicable to applications

such as MFS, their assumptions are seldom amenable to the underlying motion coordination problem

specific to MFS. Furthermore, many works do not consider the constraints imposed by industrial

adoption. Most existing research assumes that robots are initially at random positions and all robots

reach their goal destinations at some final time. In MFS, there is no requirement that all robots must

reach their destinations at the same time. Instead, it is only required that each robot eventually reaches

its destination at least once during the course of execution.

Little is known about the algorithms used in real MFS. From the available literature, the algorithms

used are not guaranteed to be deadlock-free and performance guarantees are not provided. Most works

in the field of Autonomous Ground Vehicles (AGVs) assume that planning is done by a central unit

and robots execute the plan under supervisory control. The planning algorithms usually make strong

assumptions on the synchrony of the AGVs. Asynchrony is, however, prevalent in any real system and,

therefore, has to be accounted for. Naturally, the following questions arise:

CHAPTER 1 INTRODUCTION

• Is it possible to ensure that all robots reach their assigned destinations regardless of traffic

volume?

• Is it possible to distribute the computational load in such a way that real-time implementation is

possible and scalable to large teams of robots?

• Is it possible to design algorithms that do not require supervisory control and strong synchrony

assumptions on the system?

1.2 THESIS OBJECTIVES

The objectives of this thesis are to:

1. Show that MFS has unique requirements in terms of motion coordination and that existing

methods do not provide satisfactory performance guarantees, robustness and scalability.

2. Determine the appropriate design requirements for motion coordination in MFS, taking industrial

adoption into account.

3. Design robust and scalable algorithms tailored for MFS which deliver high performance.

4. Implement the algorithms in an appropriate simulator.

5. Provide analysis of the designed algorithms in order to provide worst-case performance guaran-

tees and assess the completeness of the algorithms.

6. Provide experimental data and discussions to support the analysis and design decisions.

1.3 THESIS CONTRIBUTIONS

This thesis provides the following contributions:

Department of Mechanical Systems Engineering
University of Miyazaki

2

CHAPTER 1 INTRODUCTION

1. The specific motion coordination requirements for MFS are determined.

2. An algorithm is described that solves the motion coordination problem specifically for MFS.

3. The asymptotic worst case upper bound on the required number of moves is analysed and verified

by experiments.

4. Analysis of the algorithms finds them to be complete for a subset of graphs that are appropriate

to MFS workspaces.

5. A parallel version of the algorithm is provided which allows multiple robots to move simultan-

eously.

6. The provided algorithms are shown to be scalable. Semi-decentralized implementation leads to

low computational effort per robot.

7. An asynchronous version of the parallel algorithm is provided and implemented in a continuous

time simulation.

8. The starvation-freedom of the algorithms is proven. This guarantees that all tasks will eventually

complete, regardless of traffic density, as long as a single unoccupied grid position is available

in the workspace.

1.4 THESIS OUTLINE

Chapter 2 introduces MFS and the open-source ALPHABET SOUP simulator. Though MFS presents

many opportunities to study various dynamic resource allocation problems, it is shown that existing

motion coordination algorithms do not adequately solve the problems specific to MFS and, therefore,

deserve foremost attention. The scope of this work is thus limited to motion coordination in MFS and

related works are surveyed in Chapter 2.

Department of Mechanical Systems Engineering
University of Miyazaki

3

CHAPTER 1 INTRODUCTION

Chapter 2 introduces the popular 15 puzzle which is closely related to the problems posed by automated

manufacturing and warehousing systems. The generalization of the 15 puzzle to any arbitrary layouts

is referred to as “pebble motion on graphs”, where the workspace is represented by an undirected

graph. Chapter 2 concludes with a proposal to alter the assumptions of the classical pebble motion

problem to suit the MFS scenario. The rest of this work incrementally develops this idea in order to

arrive at a solution that is appropriate for industrial adoption.

The altered assumptions for the MFS pebble motion problem are dubbed “visitors’ rules”. Chapter 3

introduces the visitors’ rules for pebble motion on rectangular grids when a single unoccupied space is

available. Chapter 4 extends the work from chapter 3 to the case where more than a single unoccupied

space is available. Chapter 5 provides a parallel version of the algorithms developed in chapter 3 and 4.

Chapter 6 provides a continuous time version of the algorithm presented in Chapter 5 that is capable

of operating under asynchronous conditions. Finally, chapter 7 provides a summary of this work and

proposes possible complementary further work.

Department of Mechanical Systems Engineering
University of Miyazaki

4

CHAPTER 2 LITERATURE STUDY

2.1 INTRODUCTION

In recent times, wireless communication devices, micro-processors and sensors have become powerful

and inexpensive enough to enable the use of autonomous mobile robots in various real world applica-

tions. Given these advances, it is expected that, in the future, thousands of autonomous robots will

be able to complete complex tasks cooperatively. As such, multi-robot systems has been the focus

of much research. Even though research has demonstrated large systems of cooperative robots, the

application domains thus far have not been everyday events.

Until recently, “Real, mundane applications with more than a few vehicles have been lacking.” [2].

This changed in 2006, when the KIVA MFS demonstrated the commercial feasibility of large-scale

autonomous systems in a pick and pack warehousing environment. MFS is a new type of automated

storage and part-to-picker order picking system that is well-suited to e-commerce distribution centres

which experience strong fluctuations in demand and carry a wide variety of small products [17].

Currently, MFS represents the state-of-the art in commercially implemented MVS. Although MFS

technology has reached a level of maturity that allows commercial adoption, many interesting and

challenging research areas remain leaving much room for improvement of these systems.

2.2 CHAPTER OBJECTIVES

The objectives of this chapter are to provide the reader with an overview MFS and its components,

introduce the problem of motion coordination in MFS, introduce and discuss the relevant approaches

CHAPTER 2 LITERATURE STUDY

for solving motion coordination in MFS and, finally, show that the existing approaches leave room for

further research.

2.3 THE MOBILE FULFILMENT SYSTEM

The conventional system of order fulfilment requires pick/pack workers to walk through the distribution

centre with a list of inventory and retrieve ordered items by hand. Traditionally, warehouse automation

came in the form of inflexible carousels and conveyor belts which require significant capital investment

and take time to implement. It was the inflexibility, cost and complexity of the existing automated

materials handling systems that inspired Mick Mountz to found KIVA systems in 2003 [9]. Mountz

was first exposed to the realities of automated material handling equipment during his time at the failed

online grocery home delivery company Webvan.

In MFS, items of inventory are stored in shelves called mobile storage pods. Instead of sending workers

to fetch the desired items, mobile robots are employed to retrieve the pods that contain the items. The

height of the robots is low enough to fit under the pods as can be seen in Figure 2.1(a).

As seen at the top of Figure 2.1(b), human pick workers are responsible for picking the items off

the pods. The storage pods have barcodes that mark every location within the pod. Every item that

is removed from the pods is scanned using laser scanners. In this way the warehouse management

software keeps track of the inventory levels. Similarly, when the storage pods are low on stock, they are

replenished at the replenishment stations shown at the bottom of Figure 2.1(b). Upon replenishment,

every product is scanned into the system so that the relevant pod and storage location are associated

with the product being carried. In this manner, the warehouse management software keeps track of

where the products are in the warehouse.

The robots employ a screw mechanism to lift the pods. The screw mechanism is actuated by a dedicated

geared motor. As shown in Figure 2.2(a), the robots counter-rotate their lifting devices whilst rotating

themselves under the storage pods. This causes the screw to extend upwards and lift the storage pods

off the ground whilst maintaining a zero angular velocity between the lifting device and the base of

the pod. The ability to counter-rotate the screw mechanism also serves a second purpose: the pods

are purely translated during transport; whereas the robots rotate and translate to transport them. This

Department of Mechanical Systems Engineering
University of Miyazaki

6

CHAPTER 2 LITERATURE STUDY

(a) An inventory pod being carried by a mobile robot (b) A typical KIVA MFS warehouse layout

Figure 2.1. Components of the KIVA solution [40]

(a) Rotating robot counter-rotating its lift device [41] (b) A section of a KIVA equipped warehouse [4]

Figure 2.2. The KIVA solution in motion

allows for compact storage, as purely translational square pods have a smaller storage footprint than

rotational ones.

At the centre of Figure 2.2(a), an upward facing camera is seen to be mounted on the robot. This

camera is used to identify the storage pods by scanning 2D barcodes placed underneath them. Similarly,

Department of Mechanical Systems Engineering
University of Miyazaki

7

CHAPTER 2 LITERATURE STUDY

robots localize themselves in the warehouse using a downward facing camera (not shown) and fiducial

markers on floor as seen in Figure 2.2(b).

The robots’ traction system is of the well-studied differential drive type. In fact, apart from the lifting

system, the robots are fairly simple. The robots are “...to a warehouse what taxis are to a city. The

complexity of the warehouse is truly expressed in the warehouse control software that runs on the

servers.” [40].

In MFS, the warehouse control software has two functions, namely:

1. Resource allocation: the software assigns orders to picking stations, robots to pods, and pods to

either picking or replenishment stations.

2. Assistance in coordinating robot motion: robots use a space reservation system to reserve sections

demarcated by the fiducial markers. The reservation status of these sections are communicated

via standard Wi-Fi routers and is disseminated by the servers. The space reservation system

ensures that two robots cannot occupy the same section at the same time, thereby preventing

collisions.

The servers manage the resource allocation in a centralized way. On the other hand, the motion

planning is semi-decentralized: given the information supplied from the servers, robots independently

plan and execute their motions [4].

The robots are equipped with bumper pressure and infrared sensors. Because of the space-reservation

system, the sensors carried by the units are a safety measure and are not used under normal operating

conditions. These sensors serve to avoid injury to humans who wander into the working area of the

robots, or prevent damage to products that accidentally fell from the pods.

According to field data and customer testimonials, the benefits of MFS [9] include:

1. Efficiency: due to low lighting and air-conditioning needs, the cost of recharging the robots are

recovered and electricity bills are reduced.

Department of Mechanical Systems Engineering
University of Miyazaki

8

CHAPTER 2 LITERATURE STUDY

2. Accuracy: due to the scanning system, erroneous shipments are reduced.

3. Flexibility and (rapid) scalability: the required infrastructure for expansion includes robots, pods

and 2D fiducial markers. This keeps the time and cost for instalment of extra capacity low in

comparison to fixed structures required by other automation approaches.

4. Quality of life: warehouse employees have a better working environment due to reduced noise

levels (compared to all conveyor systems), less physical fatigue and increased safety.

5. Redundancy: failure of a robot, pod or even picking station does not cause the system to halt.

Instead, the capacity of the system is temporarily affected depending on which part of the system

has failed. This also eliminates the need for system-wide downtime.

6. Reduced training time: the required training time is very short, typically 2 to 3 days for new

employees.

7. Increased productivity: MFS has been found to increase productivity 2 to 3 times in pick-to-

conveyor operations.

A MFS typically has a payback period of 2-3 years [2]. Until very recently, KIVA was the only company

supplying this kind of materials handling technology. Up to February of 2012, KIVA had managed

to raise $33M in funding. However, in 2012 Amazon acquired KIVA for $775M and subsequently

re-branded to Amazon robotics. Amazon decided to stop providing the technology to competitors, so

the contracts with existing KIVA customers were not renewed after they ran out. It is estimated that

there are around 30000 robots currently in Amazon’s service [8], making it clear that the acquisition

resulted in a gap in the market.

Only very recently did new start-ups such as OTTO MOTORS [5] and fetch robotics [6] emerge to fill

the needs of industry with technologies that resemble the KIVA system. Several robotics companies

are announcing that their products are ready for real-world applications [7], but the success of these

systems has yet to be established.

Department of Mechanical Systems Engineering
University of Miyazaki

9

CHAPTER 2 LITERATURE STUDY

2.4 ALPHABET SOUP AND POSSIBLE RESEARCH DIRECTIONS

ALPHABET SOUP [42] is an open source simulator written in the Java programming language,

introduced by Hazard, Wurman and D’Andrea. Its intended purpose is to study 1) resource allocation

and 2) motion coordination in the context of MFS. In ALPHABET SOUP, items of inventory are

represented by coloured tiles with letters on them. Orders are represented by words taken from a

dictionary: every order represents a list of letters to be assembled at a picking station and shipped. A

modified version of ALPHABET SOUP’s user interface is shown in Figure 2.3.

Figure 2.3. Initial configuration of warehouse and robots in ALPHABET SOUP

Warehouses are cost centres. Therefore, the key objective in managing a warehouse is to minimize the

cost of operation. The authors hoped that releasing ALPHABET SOUP would facilitate research into

coordination algorithms which maximize the sustainable order completion rate whilst minimizing the

amount of required resources. With this goal in mind, the authors [2, 40, 41, 42] propose the following

questions in terms of resource allocation:

Department of Mechanical Systems Engineering
University of Miyazaki

10

CHAPTER 2 LITERATURE STUDY

• Where should storage pods be stored in the warehouse?

• Which pods should be taken to which stations?

• In which pods should new items be stored?

• To which picking stations should each order be assigned to?

• To which replenishment stations should incoming products be assigned to?

ALPHABET SOUP has minimal implementations of coordination algorithms. Based on their industrial

experience with the KIVA system, the authors expect that coordination algorithms should offer one to

two orders of magnitude of improvement in terms of the order completion rate.

The authors of ALPHABET SOUP make the observation that, though much research has been done

on multi-agent coordination, a great deal thereof has been in the context of contrived problems. The

motions of the robots must be such that collisions and congestion are avoided while facilitating high

product throughput. In the multi-agent research community, much focus has been placed on solving the

difficult problem of navigation in unknown environments. In contrast, in the context of MFS, mobile

robots operate in known and controlled environments.

In spite of the relative simplicity of the MFS’s motion coordination requirements and the apparent

availability of multi-agent motion coordination research, the motion coordination in ALPHABET

SOUP consists of standard A∗ [27] path-finding and reactive obstacle avoidance. The reports generated

from the provided release of ALPHABET SOUP show very high collision rates. In practice, even a

single collision in the warehouse could have catastrophic effects. These collisions are probably due

to an erroneous implementation. Regardless of the cause of the collisions, the motion coordination

scheme deserves replacement in lieu of the abundance of alternative approaches.

Department of Mechanical Systems Engineering
University of Miyazaki

11

CHAPTER 2 LITERATURE STUDY

2.5 SCOPE

In spite of MFS’s commercial success [8], it is unclear how these large robot teams coordinate their

movements. Therefore, although MFS encompasses many rich research areas, the scope of this work

is limited to the study of appropriate motion coordination algorithms for use in MFS.

2.6 COORDINATING MOTION IN MOBILE FULFILMENT SYSTEMS

In this section, the available literature for coordinating MVS is studied. In addition, the approaches

that are most amenable to the requirements of MFS are determined.

2.6.1 Resource Allocation Approaches

In the previous section, a modified version of ALPHABET SOUP was introduced. This version is

used to demonstrate how an infinite wait, called a deadlock, can occur in MFS. In this version of

ALPHABET SOUP, the following changes were made:

• Visualization of the underlying directed graph used for path finding and space reservation.

• Directed ’highways’ to avoid head-to-head conflicts between robots, as introduced in [26].

• Implementation of a simple space reservation system to avoid collisions.

The space reservation system works as follows: before a robot approaches a node, it must reserve the

node first. Only nodes that are not already reserved may be reserved. If the node is already reserved,

the robot waits until the node is freed before attempting to reserve it. When two robots compete

to reserve a node, ties are broken by a pre-defined priority in the server system. Robots free their

previously reserved node once it reaches the next node on its path.

Introduction of so called highways (by using a directed underlying graph) resolves deadlocks that

would occur from head-to-head conflicts. As seen in Figure 2.4, a deadlock could also result due to

Department of Mechanical Systems Engineering
University of Miyazaki

12

CHAPTER 2 LITERATURE STUDY

loops in the underlying graph. Let w(·) denote a “waits for” relationship and r1,r2...r8 denote robot 1

to robot 8. It is easy to see that r1 = w(r2),r2 = w(r3) ... r8 = w(r1)→ r1 = w(r1).

𝑟1 𝑟2 𝑟1

𝑟8

𝑟7

𝑟6

𝑟2

𝑟3

𝑟4

𝑟5

Figure 2.4. Deadlocked configuration of warehouse and robots

It is a known requirement that the motion coordination of multiple vehicles should be deadlock free

[18]. It is generally accepted that the deadlocks should be automatically resolved [3]. Some recent

research in multi-agent coordination do not address these issues [43, 44], while others specifically

focus on them [19, 45, 46, 47, 48].

Banker’s algorithm [55] is a well known algorithm originally developed to prevent deadlocks in

distributed computing systems with shared resources. In [19, 45, 46], authors adapt these ideas for use

in MVS. In this paradigm, space is regarded as a shared resource. The key idea is to check that the

system never enters an ’unsafe’ state by ensuring that every requested action is safe before allowing it.

An unsafe state is one where the allocated resources exceed the available resources. In the situation

shown in Figure 2.4, this could for example have been achieved by preventing r1 from entering the

Department of Mechanical Systems Engineering
University of Miyazaki

13

CHAPTER 2 LITERATURE STUDY

loop before r8 had exited it. In [19, 47], the authors devise a check to ensure that the system never

enters a state that will inevitably lead to a deadlocked state.

Another approach is to model the MVS as a Petri net [47, 48], a tool used in the analysis of distributed

discrete dynamical systems. The authors provide little detail about the completeness and efficiency of

their approach and also do not discuss its algorithmic complexity.

The works mentioned here show that ideas from distributed computing can be applied to MVS. These

ideas include deadlocks, live-locks and starvation-freedom. The notion of a deadlock has already been

introduced as a system state where all robots wait infinitely for another robot to move. Live-locks are

similar to deadlocks because they prohibit the system from completing its assigned tasks. A live-locked

situation is one where robots move in an oscillatory manner. This implies that, even though robots are

moving, no robot is actually sequentially progressing towards its goal. The notion of live-locks leads

to the important system property of starvation-freedom. If a robot does not reach its goal destination

in a finite time, it is said to be starving. Therefore, starvation-freedom of the system implies that all

robots will eventually complete their tasks (reach their goal destinations).

It is important to note that in all the works cited in this subsection, the path planning is done off-line

and deadlock avoidance is regarded as a pure scheduling problem. Because the path planning is

done off-line, live-locks cannot occur and deadlock freeness implies starvation-freedom. Live-locks

are a problem that occur when robots myopically try to resolve conflicts by re-planning their paths.

Roozbehani and D’Andrea [26] present an example of a live-lock situation, which is discussed later in

this chapter.

In distributed systems, critical sections of code are those that may only be accessed by one process at a

time. In other words, allowing any one process to execute a critical section mutually excludes all other

processes from executing it. Solving this mutual exclusion (mutex) problem entails the design of a

method that brackets the critical sections of code by use of an entry and exit protocol. By analogy,

if the processes are represented by robots in MVS and critical sections of code are represented by

graph vertices, then the space-reservation system represents the entry and exit protocol. The mutual

exclusion property therefore naturally leads to a safety property: occupancy of a node by any one robot

mutually excludes occupancy by any other robot. As a result, mutex ensures that collisions will never

occur. In order to avoid trivial solutions to the mutex problem, where no process ever executes any

Department of Mechanical Systems Engineering
University of Miyazaki

14

CHAPTER 2 LITERATURE STUDY

critical section, a liveness property is also required. Starvation-freedom is such a liveness property

[56].

It is important to note that the notions of these distributed system concepts have been adapted to suit

the MVS scenario. For example, in the study of mutex algorithms, starvation-freedom is guaranteed

when a process that wants to access a critical section obtains mutex to access it within a finite time [56].

Eventually granting a robot access to a desired node in MVS does not necessarily guarantee progress

because this does not exclude the live-lock scenario. This implies that eventual access to a shared

resource does not guarantee progress in MVS in the same way that it does for distributed computing

systems. Therefore, the ideas from distributed systems are applicable, but their exact definitions have

been adapted to suit the scenario at hand.

Finally, the resource allocation approaches mentioned here assume that the vehicles leave the workspace

after completion of their missions. In practice, this would require that every robot’s path to terminate

in a reserved parking space. Such additional parking spaces consume space in the warehouse where

it is a valuable commodity. Furthermore, these approaches model the continuous time dynamics of

the system as a discrete dynamical system in the scheduling phase. This leads to a high accuracy

tracking performance requirement during the execution phase [3] and should be accompanied by a

synchronization method in the case where contingencies occur or the tracking performance is not good

enough.

2.6.2 Multi-Agent Path Finding

Abundant literature is available that addresses the problem of Cooperative Path Finding (CPF) [32, 34,

35, 36, 52], Multi-Agent Path Finding (MAPF) [13, 14, 15, 37], Multi-Robot Path Planning (MRPP)

[16, 38, 51] and Pebble Motion on a Graph (PMG) [21, 34, 39]. CPF, MAPF, MRPP and PMG all

address the problem of moving a set of objects from their initial locations to their goal locations

without collisions in a spatially constrained environment [52]. In CPF, the said objects can be either

agents or robots; in MAPF, the objects to be moved are agents; and, in MRPP, it is robots. Robots

are agents; however, agents are not necessarily robots. In this work, the proposed algorithms are

specifically intended for robots. This implies that the algorithms specifically need to account for their

Department of Mechanical Systems Engineering
University of Miyazaki

15

CHAPTER 2 LITERATURE STUDY

physical embodiment in space and time. Agents do not necessarily require these aspects to be taken

into account, depending on the context of their manifestation.

Of all the definitions, PMG is the most general. In PMG, pebbles, which is an abstraction of any

arbitrary object, are to be moved. PMG is a generalization of the famous 15 puzzle. In the 15 puzzle

[10], 15 tiles are placed on a 4×4 grid, leaving one open space. The 15 puzzle board is numbered in

row-major order to indicate the destination positions of each tile as shown in Figure 2.5(a). The board

can conveniently be represented by an undirected graph as shown in Figure 2.5(b), where the nodes

represent allowable board positions. The tiles are such that they can slide vertically or horizontally

along the board and cannot be lifted from it. The allowable moves between positions can be represented

as graph edges between the nodes. The game starts out in row-major configuration. To play the game,

the tiles are first randomly shuffled. The objective of the game is to restore the board to its initial

configuration as shown in Figure 2.6(a).

It has long been known that odd permutations of the puzzle are impossible to solve and all even

permutations are solvable [23]. An example of an unsolvable configuration is shown in Figure 2.6(b).

The first attempt to generalize the analysis of the 15 puzzle to arbitrary graphs was given by Wilson

[20]. Wilson gives an efficient procedure for deciding the solvability (also called feasibility) for

bi-connected graphs with one unoccupied vertex, but does not provide an analysis of the number of

moves required to solve the puzzle. It was Kornhauser [1, 34] who introduced PMG and named it.

Kornhauser gives an analysis for the case where there are less pebbles than vertices on any arbitrary

graph. His results include a P-time feasibility decision procedure and the provided solution method

requires O(N3) moves to reach a solution, where N is the number of nodes in the graph.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) 15 puzzle board indicating grid positions

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b) A graph representation of the board

Figure 2.5. The 15 puzzle board and its graph representation

Department of Mechanical Systems Engineering
University of Miyazaki

16

CHAPTER 2 LITERATURE STUDY

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

7

4

5 6

11

8

9 10

15

12

13 14

3

(a) A solved instance of the 15 puzzle

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

7

4

5 6

11

8

9 10

15

12

13 14

3

(b) An unsolvable instance of the 15 puzzle

Figure 2.6. Instances of the 15 puzzle

In PMG, algorithms are said to be complete if they are able to provide a solution to any problem for

which a solution exists. As an example, works that require the underlying graph to be bi-connected

[20, 50] are not complete because solvable instances of problems exist that do not manifest in bi-

connected graphs. Kornhauser’s analysis is, therefore, complete as it is capable of solving any solvable

instance and provides a feasibility check. Though it would be useful to solve this problem optimally,

both the problem of minimizing the number of moves when only one agent is allowed to move at a

time, and minimizing the makespan when agents are allowed to move simultaneously have been shown

to be NP-hard [39, 54].

As a result of its NP-hardness, optimal approaches scale very badly with the number of agents. Some

very recent approaches [52] minimize the makespan (number of turns) with the critique that sub-optimal

methods have dramatically longer solution sequences in densely populated scenarios. Considering

the target application domain of MFS, it is observed that overfilling the environment with robots

unavoidably leads to reduced throughput and should be avoided. However, providing for algorithms

that are capable of solving densely populated scenarios and are always deadlock free is desirable for the

sake of robustness. The solution length of sub-optimal approaches are likely to be close to optimal in

their intended use due to low traffic density. Therefore, the solution length of sub-optimal approaches

is permissible in this application domain and provide a scalable alternative to optimal ones.

Kornhauser’s work gives a sub-optimal algorithm to the PMG problem. Despite the fact that their

results are subsets of Kornhauser’s [49], it was pointed out that sub-optimal solutions that are complete

for certain sub-classes of graphs have recently been published in top-tier journals [24, 25, 30, 31]. It

is speculated that this oversight occurred due to the fact that Kornhauser’s work is not described in

Department of Mechanical Systems Engineering
University of Miyazaki

17

CHAPTER 2 LITERATURE STUDY

a single document and he also does not provide algorithmic descriptions. It was noted that it would

require significant effort to construct algorithms from the proofs in his works. In response, recent

attempts at reconstructing complete solutions have been given, notably that of de Wilde [15].

Similar to the works discussed in the subsection 2.6.1, the definition of discrete time steps assumes that

all robots move at the same time. This means that a centralized planner and supervisory controller will

be used, which implies synchronous execution. In fact, recent research [53] details the various issues

with real-world adoption of MAPF and other centralized planning methods. In contrast to approaches

referred to in the previous section, if the PMG solver is able to find a solution, it is live and deadlock

free. This is, however, not necessarily the case for all CPF, MAPF and MRPP methods.

Finally, some research [11] studies cases where robots do not have unique identification numbers

and moving any one of a number of anonymous robots to a specified location is acceptable. In the

MFS context, tasks are assigned to a specific robot which will need to visit specific locations (specific

pods need to go to specific stations). While it is true that, in the resource allocation phase, robots can

arbitrarily be assigned tasks, once a task is assigned, they are no longer anonymous.

2.6.3 Adaptive Highways on a Grid

One work that is of notable importance, due one of the co-author’s industrial experience in development

of the KIVA MFS, is that of Roozbehani and D’Andrea [26] called “Adaptive Highways on a Grid”.

Amazon and KIVA combined have had over 14 years and large budgets to develop and improve their

robot coordination scheme. Due to Amazon’s decision to keep the technology to themselves, not much

is known about how the robots are coordinated. It is speculated that this work is the only known work

to detail the motion coordination in industrially adopted MFS.

Furthermore, it is the only work that describes the dynamic model of the robots in detail. The robots

are governed by a second order dynamic model, with a maximum acceleration and velocity constraint.

The robots act as finite state machines which must transition through a stationary state in order to

switch between linear and rotating motions.

A central hub is employed to communicate space reservations and trajectories between the robots. This

Department of Mechanical Systems Engineering
University of Miyazaki

18

CHAPTER 2 LITERATURE STUDY

hub imposes a fixed ordering on the robots in terms of communication, space reservation and path

planning. As implemented in subsection 2.6.1, robots must reserve space before using it. The space is

partitioned into cells that are large enough contain the vehicle envelope completely. Once again the

cells are represented as vertices on a graph and the allowable moves between them are represented by

the connecting edges. This results in a four-connected grid type map.

This work is furthermore unique in the sense that robots are not required to visit a single destination,

but rather a set of randomly selected locations that are updated over time. In other words, robots

cyclically visit random locations on a grid and it is not required that they occupy their target locations

at the same time, as assumed in subsections 2.6.1 and 2.6.2. This allows for solving the problem of

cyclically sending each robot in a group of robots to some target location to either pick up or deliver

inventory as typically required in MFS.

The authors address the problem of finding a set of trajectories that maximize the average speed of the

vehicles in real time. This is achieved using a two-layer control architecture in which the trajectory

optimization is done locally and information is distributed via the central hub. Local planners generate

discrete trajectories given the information about other robots’ trajectories from the central hub, and a

low level controller provides a continuous execution in order to implement and preserve the properties

of the discrete plan.

Although their approach is well-suited to MFS, there are two aspects that could be improved. Firstly,

some attempt is made to avoid deadlocks in an ad hoc manner, but their approach is not provably

starvation free. Secondly, the algorithmic implementation of their overall scheme is not clearly stated.

The ALPHABET SOUP implementation in subsection 2.6.1 is an instance of the “Fixed Highways

Algorithm” without any deadlock handling mechanism.

2.7 RESEARCH GAP

Resource allocation approaches [19, 45, 46, 47, 48] are not complete and require conservative means

to accommodate robots that have completed their tasks. The computational requirement for deadlock

checking and its centralized nature limit the scalability of these approaches. Furthermore, these

Department of Mechanical Systems Engineering
University of Miyazaki

19

CHAPTER 2 LITERATURE STUDY

approaches often prune away a lot of the usable solution space in a conservative way leading to long

solutions in terms of makespan.

Recent sub-optimal PMG approaches are complete and provide starvation free solutions at low com-

putational cost. However, for both optimal and sub-optimal approaches, the underlying assumption

that all robots end at their final destinations is not appropriate to MFS. Firstly, letting completed

robots stand idle while all robots are not yet complete incurs opportunity costs: the completed robots

could be assigned new tasks and do useful delivery work instead of waiting. In order to avoid the

costs of being idle, cyclic task assignment would induce re-computation upon every robot reaching

its destination and a large portion of the computation is wasted by calculating parts of the plan that

will inevitably be overridden later. Apart from incurring unnecessary computation, additional priority

orderings would be required to ensure liveness of the solution: to ensure all robots eventually reach

their destinations.

The approaches discussed in subsection 2.6.2 also do not account for robots in the environment that

have no destination node. Furthermore, these approaches do not account for the case where all robots

are to visit the same destination at different times. Therefore, the feasibility tests as discussed by Yu

and Rus [12], where it is assumed that all pebbles must be at their destination node in the final time,

are not necessarily appropriate in the MFS context. Consider, for example, the “un-solvable” 15 puzzle

in Figure 2.6(b). If the requirement is such that every tile on the board reaches its destination at least

once, the puzzle is no longer un-solvable and a sequence of moves can easily be shown that brings

tiles 14 and 15 to their respective grid positions. These new rules for the 15 puzzle are appropriate to

MFS. It is thus concluded that adapting the PMG approach to MFS is not an elegant solution and the

requirements of MFS should be designed into the coordination algorithm from inception.

Department of Mechanical Systems Engineering
University of Miyazaki

20

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’

RULES

3.1 INTRODUCTION

In order to solve the problem of multi-robot motion coordination in MFS efficiently, algorithms that

are tailored to its needs are required. Existing approaches do not scale well with large numbers of

robots and do not always guarantee starvation-freedom. The underlying assumptions of the intended

application dictates the design decisions made in the development phase of coordination algorithms.

Therefore, adapting existing approaches to MFS does not provide an efficient solution to the motion

coordination problem.

3.2 MFS MOTION COORDINATION REQUIREMENTS

Given the feasibility of current commercial MFS and the surveyed literature, the following requirements

must be met:

1. Collisions are catastrophic and are not allowed.

2. The movements of the robots are governed by second order dynamics and a finite state machine:

they have to transition through an instantaneous stationary state in order to switch between linear

and rotating motions. This implies that they have to come to a halt in order to change direction.

3. The system should be deadlock free.

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

4. It is preferable for robots to operate independently and asynchronously in order to avoid enforcing

supervisory control systems with good tracking performance requirements.

5. Fiducial markers and server systems provide the required infrastructure for robots to localize

themselves and communicate with each other.

6. When a robot is assigned a task, it must eventually be completed, where-after it may or may not

receive a new task.

7. Idle robots are allowed in the environment and must not (catastrophically) hinder the system’s

performance.

8. In order to maximize throughput, minimum makespan solutions are preferable; however, solution

quality is secondary to deadlock-freeness, robustness and scalability.

Addendum A discusses the notion of discrete rotations on graph cycles and train-like motions. It is

chosen not to allow such motions due to the technical difficulties that arise with their implementation

on real robots.

3.3 VISITORS’ RULES

As discussed in subsection 2.6.2, previous works that originated from analogies with the 15 puzzle

adopt the assumption that robots start in an initial configuration and end in a final configuration.

However, in MFS robots are required to visit their assigned destinations at least once and can thereafter

move to different locations without compromising their goal: to move items between storage locations

and picking or replenishment stations.

With this goal in mind, new rules to the 15 puzzle are proposed: tiles are initially at random board

positions. Every tile is assigned a destination board position. The objective of this new 15 puzzle is to

generate a sequence of moves such that every tile visits its destination node at least once. Once a tile

has reached its destination node it is regarded as having completed its mission and is allowed to move

Department of Mechanical Systems Engineering
University of Miyazaki

22

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

to any other node. This version of the game is referred to as the “visitors’ 15 puzzle” and the new rules

as “visitors’ rules”.

Under visitors’ rules, the destination node of a tile does not necessarily need to be unique. In fact,

all tiles can be sent to same location and the assignment can still be solvable. If the board of the

visitors’ 15 puzzle is restricted to rectangular four-connected grids, all instances of the visitors’ 15

puzzle are solvable. In other words, the cost associated with the feasibility check can be eliminated in

this case.

Tiles in the 15 puzzle are analogous to robots in the MFS workspace. Therefore, tiles are referred to as

robots in the rest of this thesis. Similarly, the 15 puzzle board is analogous to the MFS workspace and

will therefore be referred to as the workspace. If the board has a height of h and width of w, a more

general instance of the 15 puzzle is obtained. This puzzle is referred to as the h×w puzzle.

3.4 PROBLEM STATEMENT

G is a graph of N vertices with k = N−1 robots numbered 1, ...,k on distinct vertices. The robots are

constrained to move on the vertices V and edges E in a graph G(V,E). Each robot ri has a current

position oi ∈ V and a goal position pi ∈ V . Time is divided into discrete steps. At each time step a

robot can either move to a neighbouring location or wait in its current location. A move consists of

transferring a robot from its current vertex to an adjacent unoccupied one. The problem is to find a

sequence of actions for all ri that will move it to pi at least once.

3.5 PROPOSED SOLUTION

In the 15 puzzle, only one unoccupied node exists. The unoccupied node is referred to as a “swap-

space”. In order to play the 15 puzzle with visitors’ rules, the following procedure is executed for

every robot, one after the other:

First, a route is planned from oi to pi. Once the route is determined, the robot has to move to its

destination. While en route, the way can either be clear or blocked. If the way is clear, it implies that

Department of Mechanical Systems Engineering
University of Miyazaki

23

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

the swap-space is at the next node on the current robot’s route. In this case, the robot simply swaps its

position with the swap-space.

However, the robot could be required to move other robots out of its way. In the case that the current

robot’s path is blocked, it plans a path from the swap-space to the next node on its route. This path is

referred to as the “swap-path”. It is a requirement that the swap-path circumvents the current node

of the robot. In order to achieve this, the robot’s current node is excluded from the graph while the

swap path is planned. Once the swap-path is found, starting from the swap-space, robots swap their

positions sequentially with the swap-space along the swap path until the swap-space is at the next node

on the current robot’s route.

Mission completion means that a robot has reached its destination vertex. After every move, the robot

that has moved is checked for mission completion. If the robot has reached its destination, it is added

to a set of completed robots. This can happen either by serendipity: as a result of being on another

robot’s swap-path, or by intent: as a result of the robot’s own planned movements. When all robots are

contained in the completed set, each robot has reached its target destination at least once.

The outlined procedure provides a solution to the h×w puzzle.

3.6 IMPLEMENTATION

The pseudo-code of the proposed algorithm is as shown in Algorithm 3.1 below. The planned path

contained in Route is represented as a list of graph vertices ∈V . Route is planned using a standard

implementation of the well-known A∗ [27] algorithm. The underlying graph G is implemented using

an adjacency list as it represents a sparse four-connected grid. Swap-space represents the node location

of the swap-space and is a global variable that is visible to all sub-routines.

The notation: A← B, indicates that the value of B is assigned to A. Algorithm 3.1 makes use of two

sub-routines “Plan_swap” and “Execute_swap” shown in Algorithms 3.2 and 3.3 respectively. In

Algorithm 3.2, the swap-path is planned. In order to circumvent the Robot’s currently occupied node,

Current_Node is excluded during the planning step. Once again, A∗ is used to plan this path.

Department of Mechanical Systems Engineering
University of Miyazaki

24

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

Algorithm 3.1 Solve
add all robots to Pebbles_queue

while Pebbles_queue has elements do

if Robot has not yet completed its mission then

Current_node← get Robot’s current position

Goal_node← get Robot’s goal position

Route← plan a path from Current_node to Goal_node

while Route is not empty do

Next_node← remove next node from Route

if Next_node is not occupied then

move Robot to Next_node

Swap-space← Current_node

else

Swap-path← Plan_swap(Current_node, Next_node)

Execute_swap(Swap-path)

end if

end while

end if

end while

Algorithm 3.2 Plan_swap

Input: Current_node, Next_node

set Current_node to excluded

Swap_path← plan route from Swap-space to Next_node

set Current_node to included

Output: Swap_path

Algorithm 3.3 Execute_swap

Input: Swap_path

while Swap_path is not empty do

To_swap_node← remove next node from Swap_path

To_swap_robot← get robot at To_swap_node

move To_swap_robot to Swap-space

Swap-space← To_swap_node

end while

Department of Mechanical Systems Engineering
University of Miyazaki

25

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

In Figures 3.1 and 3.2, robot 1’s mission is completed using the proposed algorithm. Figure 3.1 shows

that robot 1’s path is blocked while executing Algorithm 3.1. It subsequently plans a swap-path using

Algorithm 3.2 and then successively executes the moves required by the swap-path using Algorithm

3.3. In the final step of Figure 3.1, robot 1 progresses by a single move in the next iteration of the outer

loop in Algorithm 3.1.

Figure 3.2 shows the overall process of moving robot 1 to its destination. The first and last images

represent the state of the board before robot 1 starts moving and after it reaches its destination

respectively. The second image shows the initial planned path. All subsequent steps include the

required swap path and do not show the process of the individual swaps, but rather the result after

every termination of the sub-routine shown in Algorithm 3.3.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2

13

9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2

13

9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7 6 5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7 6 5

4 10 11 12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

15 2 13 9

8 7 6 5

4 10 11 12

3 14 1

Figure 3.1. Robot 1 plans its route and progresses by one move

Department of Mechanical Systems Engineering
University of Miyazaki

26

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2

13

9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2

13

9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2

13

9

8 7

6

5

4 10

11

12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

15 2 13 9

8 7 6 5

4 10 11 12

3 14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7 6 5

4 10 11

12 3 14

1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7 6 5

4

10

11

12 3 14

1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8 7 6 5

4 10

11

12 3

14 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15 2 13 9

8

7

6 5

4 10

11

12 3

14

1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

15

2

13 9

8 7

6 5

4 10

11

12 3

14

1

Figure 3.2. Robot 1 completes its mission by intent

3.7 RESULTS AND DISCUSSION

3.7.1 Text-based simulation environment

In order to validate the proposed algorithm, a simulation environment was developed in the Java

programming language. The environment supports simple text based output so that the mission

completion of the robots can be visualized, as shown in Figure 3.3.

Department of Mechanical Systems Engineering
University of Miyazaki

27

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

In this implementation, the target destination of each robot is determined by its unique identification

number and the row-dominant numbering of the board for consistency with the original 15 puzzle.

However, robots can be assigned any destination without affecting the solvability of the visitors’ h×w

puzzle. In later chapters, other destination assignments will be showcased.

The initial board state can be seen in Figure 3.3(a). Robot 12 is already in its target position in the

starting board state; this is allowed and is taken as an instance of mission completion by serendipity.

“Pebbles Queue” indicates a ordered list of robots that have not yet been completed. The use of the

term “Pebbles” is from the PMG nomenclature. Robots are removed from the “Pebbles Queue” in

the order shown. This order is arbitrary as it does not affect the game-play under visitors’ rules. The

completed set is not ordered as it is implemented using a hash set.

A robot is removed from the “Pebbles Queue” and added to the “Completed” set when it reaches its

destination. Once all the robots have been added to the completed set, the game terminates as shown in

Figure 3.3(b). Coincidentally, in Figure 3.3(b) robots 1,2,3,4,13 and 14 are at their destinations upon

termination of the game. Once again, this is not a requirement under the visitors’ rules.

3.7.2 Complexity and completeness

For robots moving on grids, the asymptotic worst case growth rate g of the proposed algorithm is given

in Addendum B and found to be g = O(N
3
2) where N is the number of nodes in G. Addendum C shows

that this result extends to the case where the underlying graph is composed of multiple rectangular grids

where every pair of intersecting rectangular sections share at least two nodes. Addendum D shows

that the proposed algorithm is complete for bi-connected graphs. As discussed in subsection 2.6.2,

this result was also obtained by Wilson [20]. The result of these three Addenda can be summarized as

follows:

1) As long as the underlying graph is biconnected, the proposed algorithm is guaranteed to provide a

solution.

2) However, some bi-connected graphs can lead to very inefficient motions if one of the paths that

connect two sub-graphs is very long. The asymptotic analyses in Addenda B and C rely on the

Department of Mechanical Systems Engineering
University of Miyazaki

28

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

(a) The starting board state

(b) The final board state

Figure 3.3. Console window text-based output for the 15 puzzle with visitors’ rules

assumption that both paths connecting any two sub-graphs are short. The class of graphs composed

of rectangular grids that share at least two nodes between any two intersecting sections always have

short pairs of paths between any two of their sub-graphs. The said class of graphs well describes real

warehouses. Therefore, even though the proposed algorithm is not complete in general, it is complete

for an appropriate class of graphs that is easy to enforce in real applications. As long as the user

enforces such a graph, the performance guarantees hold in terms of the number of required moves for

all robots to reach their destinations at least once.

In other words, the analysis specifies the design guidelines for the underlying graphs for which the

proposed algorithm 1) will work and 2) will be efficient. For the specific sub-class of graphs, the

described performance is achieved; however, it is easy to show other counter-examples where the

performance guarantees do not hold. For example, the algorithm achieves a O(N3) upper bound when

the graph consists of a single graph cycle.

Department of Mechanical Systems Engineering
University of Miyazaki

29

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

3.7.3 Results

The developed simulation environment allows for testing of the proposed algorithm. The simulations

show that all robots eventually reach their target destinations as desired as shown in Figure 3.3. To

verify the analytical result, it is compared with data obtained from experiments as shown in Figure

3.4. The experiments were conducted by creating a h×h grid and allowing the game to be played

to completion whilst counting the number of moves. The grid dimension h was initialized to 2 and

incrementally increased to 75 which yields 5625 nodes.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

m
o

ve
s

Number of nodes N

nMoves

O(N^(3/2))𝑂(𝑁
3
2)

Figure 3.4. Moves versus board size for the visitors’ h×h puzzle

3.7.4 Discussion

The analytical growth rate of the algorithm is shown by the blue curve and the simulation result is

shown by the maroon dots in Figure 3.4. The analytical growth rate and simulation result are seen

to have the same shape, which suggests that the analysis is correct. Though it is not shown, the

environment supports rectangular boards of any dimension. As discussed in section 3.6 the location

of the swap-space is a global variable that is updated with every move. Therefore, this version of the

simulator does not support more than one open-space.

Department of Mechanical Systems Engineering
University of Miyazaki

30

CHAPTER 3 THE 15 PUZZLE WITH VISITORS’ RULES

3.8 CONCLUSION

This chapter has introduced the requirements of a motion coordination scheme for use in MFS. The

notion of visitors’ rules for the 15 puzzle allows for an analogy to be made between the 15 puzzle

and the MFS motion coordination requirements. An algorithm was proposed, implemented, analysed,

evaluated and discussed. The analysis shows that the proposed algorithm is complete and efficient for a

class of graphs that is appropriate in industrial MFS settings. The experiments show that the proposed

algorithm allows all robots to reach their target nodes at least once, as desired. The analytical and

experimental results show good correlation. The proposed algorithm scales well with the number of

nodes in the underlying graph, even in this case where there are k = N−1 robots. It is noted that the

current algorithm does not allow for cases where more than one unoccupied node is available, which

will be addressed in the following chapter.

Department of Mechanical Systems Engineering
University of Miyazaki

31

CHAPTER 4 EXTENSION TO MULTIPLE SWAP

SPACES

4.1 PROBLEM STATEMENT

In the previous chapter, an algorithm that solves the MFS motion coordination problem in the case

where only one unoccupied node exists was introduced. An algorithm that allows for the single

swap-space scenario is robust against high traffic volumes and must be deadlock free. It is, however,

highly unlikely for a single swap-space scenario to occur in industry. In industry, the robot traffic

density will generally be low, as high traffic density leads to reduced throughput. It is, therefore,

desirable to have an algorithm that can both solve single and multi-swap-space scenarios. This chapter

is dedicated to extending the work from the previous chapter so that multiple unoccupied spaces can

be accommodated.

The previous problem statement is thus modified to the case where G is a graph of N vertices with

k < N robots numbered 1, ...,k on distinct vertices.

4.2 PROPOSED SOLUTION

According to Skiena [57], the Breadth First Search (BFS) was first found to give the shortest path by

Moore [29]. The A∗ search from the swap-space to the next node on the robots path can easily be

replaced with a BFS from the next node on its path to the nearest unoccupied space. This allows the

algorithm to be extended to the case where more than one unoccupied node is available.

CHAPTER 4 EXTENSION TO MULTIPLE SWAP SPACES

The updated version of Algorithm 3.1 is shown in Algorithm 4.1. Previously, the global variable

Swap-space was updated after every move operation. In the updated algorithm, it is no longer necessary

to keep track of Swap-space’s position. In Algorithm 4.1, the sub-routine Plan_swap has been replaced

with Find_swap shown in Algorithm 4.2 which implements the BFS.

In Algorithm 4.2, Swap-space is no longer used. Also, it is assumed that a function reverse(·) is

available. This function reverses the order of the nodes in a path such that it is given from sink to

source instead of from source to sink. As a result, the swap-path initially contains an unoccupied node

at its head and the next node on the robot’s path at its tail.

Algorithm 3.3 also requires modification to the form given in Algorithm 4.3. This is due to the fact that

the global variable Swap-space needs to be replaced with the local variable Unoccupied which keeps

track of the swap-space on the swap-path, and is initially obtained from the head of the swap-path.

Algorithm 4.3 could be used to replace Algorithm 3.3 in the previous chapter if the swap-path given by

the A∗ implementation contains the swap-space at its head. In the previous chapter, it was assumed

that the swap-path does not include the unoccupied node.

4.3 RESULTS

The proposed changes were made to the simulation environment. Figure 4.1 shows that the workspace

contains multiple unoccupied spaces and was able to proceed from its initial to its final state using

the proposed changes. Previously, it was claimed that the implementation was capable of solving any

h×w instance of the game, but was not shown. In this experiment, a 4×5 workspace was used in

order to showcase this functionality.

Robot 9 is still in the “Pebbles Queue” in the final state, due to the way that the program removes

elements from the queue. Robot 9 was serendipitously completed and added to the completed set;

however, it was never removed from the “Pebbles Queue” because all robots were contained in the

completed set before it was scheduled for removal. This behaviour does not affect the correctness of

the program.

It is expected that lower traffic densities result in fewer required moves, as less moves are spent long

Department of Mechanical Systems Engineering
University of Miyazaki

33

CHAPTER 4 EXTENSION TO MULTIPLE SWAP SPACES

Algorithm 4.1 Solve_multi
add all robots to Pebbles_queue

while Pebbles_queue has elements do

if Robot has not yet completed its mission then

Current_node← get Robot’s current position

Goal_node← get Robot’s goal position

Route← plan a path from Current_node to Goal_node

while Route is not empty do

Next_node← remove next node from Route

if Next_node is not occupied then

move Robot to Next_node

else

Swap-path← Find_swap(Current_node, Next_node)

Execute_swap(Swap-path)

end if

end while

end if

end while

Algorithm 4.2 Find_swap

Input: Current_node, Next_node

set Current_node to excluded

Swap_path← find a route from Next_node to the nearest open space using BFS

Swap_path← reverse(Swap_path)

set Current_node to included

Output: Swap_path

swap paths and more are spent progressing towards the robot destinations. In addition, when the traffic

density is reduced, there are less robots that need to visit their destinations, which should have an

additional linearly decreasing effect on the required number of moves. Experiments are performed to

verify this expectation.

The experiments consist of generating random starting positions for k robots and allowing the game

to proceed to completion. The number of robots investigated is k = 1, ...,N− 1. In addition to the

Department of Mechanical Systems Engineering
University of Miyazaki

34

CHAPTER 4 EXTENSION TO MULTIPLE SWAP SPACES

Algorithm 4.3 Execute_swap_multi

Input: Swap_path

Unoccupied← remove first node from Swap_path

while Swap_path is not empty do

To_swap_node← remove next node from Swap_path

To_swap_robot← get robot at To_swap_node

move To_swap_robot to Unoccupied

Unoccupied← To_swap_node

end while

(a) The starting workspace state

(b) The final workspace state

Figure 4.1. Text-based output with multiple unoccupied spaces

effect of the traffic volume, the effect of the aspect ratio of the grid also affects the number of required

moves. To investigate the effect of the aspect ratio of grids independently from the number of nodes,

numerous experiments with the same number of nodes but different aspect ratios are required. To this

end, 144, which is a comparatively small number, has many integer factors. Therefore, N = 144 is a

Department of Mechanical Systems Engineering
University of Miyazaki

35

CHAPTER 4 EXTENSION TO MULTIPLE SWAP SPACES

good choice as it provides many row/column combinations. The results of the experiment are shown

in Figure 4.2.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140

n
u

m
b

e
r

o
f

m
o

ve
s

number of robots

2x72

3x48

4x36

6x24

8x18

9x16

12x12

Figure 4.2. Number of moves versus number of robots for different workspace sizes

4.4 DISCUSSION

The expectation that the number of moves decreases as the traffic decreases is validated by the

experimental results. The results show that the number of moves scales sub-linearly between the

number required for a single robot and the number required for k = N−1 robots.

The aspect ratio is taken as a = h/w. Decreasing the aspect ratio is seen to have the effect of increasing

the number of moves. However, the effect is not linear. The 8× 18 workspace results in a = 0.44

and has comparative performance to the best faring case of the 12×12 workspace with a = 1, whilst

the 2× 74 with an aspect ratio of a = 0.028 workspace results in 3.65 times the number of moves

compared to the 12× 12 workspace for the case where k = N− 1. The increase in the number of

required steps can be attributed to the fact that the average path length in grids with extremely low

aspect ratio are significantly longer than for square grids.

Department of Mechanical Systems Engineering
University of Miyazaki

36

CHAPTER 4 EXTENSION TO MULTIPLE SWAP SPACES

4.5 CONCLUSION

The visitors’ algorithm of Chapter 3 has been extended to the case where more than a single unoccupied

space is available. Experiments show that the modification is successful. The resulting program

behaviour is as expected in the sense that the required number of moves decreases when the number

of unoccupied spaces increases. Grids that are severely non-square are seen to increase the required

number of steps significantly.

In this and the previous chapter, the number of moves has been the primary feature under investigation.

The advantage of employing numerous robots to perform tasks is that multiple tasks can be performed

simultaneously. This results in increased throughput. Up to this point, this advantage has not yet

been exploited as robots completed their tasks consecutively. The following chapter is dedicated to

developing a visitors’ algorithm that allows for simultaneous task execution. This is referred to as

parallel execution. In the context of parallel execution for MFS, the number of moves becomes less

important. Instead, throughput becomes the metric of concern.

Department of Mechanical Systems Engineering
University of Miyazaki

37

CHAPTER 5 PARALLEL EXECUTION

5.1 INTRODUCTION

In the previous chapters, it was assumed that the plans for all robots are computed and executed in

series. One of the main benefits of employing multiple robots is the increased throughput gained by

parallel execution of tasks. Therefore, in this chapter an algorithm is developed that implements the

visitors’ rules in the case where robots are allowed to complete their tasks in parallel.

5.2 PROBLEM STATEMENT

In the case of parallel task execution, all robots are allowed to move simultaneously. This gives rise to

the possibility of collision due to two or more robots attempting to move to the same location at the

same time. Collision avoidance can effectively be achieved with the use of a space reservation system.

The space reservation system gives rise to the problem of choosing precedence when multiple robots

have conflicting goals. As discussed in subsection 2.6.1, improper implementation of the precedence

handling mechanism could lead to starvation.

5.3 PROPOSED SOLUTION

The execution is adapted such that all robots are allowed to move simultaneously. In this context, every

discrete time step represents a turn. In the context of the previous chapters, only one robot was moved

in every turn. Therefore, previously, the notion of a move and a turn were equivalent. In this chapter,

these two concepts are separate and there can be multiple moves in every turn.

CHAPTER 5 PARALLEL EXECUTION

With the aim of achieving a well defined precedence handling mechanism, all robots are initially

assigned a priority. Every turn can be broken down into phases. The phases of the turns are described

below. The first phase is the planning and intention propagation phase. At the start of each turn, all

robots plan their routes and determine the next node to move to in order to progress towards their

goals.

Every robot maintains a priority queue of instructions. The priority of elements in this queue is

determined by the priority of the instructing robot. The instructions instruct robots to move to a

neighbouring node, or stay put in its current location. If the next node on a robot’s route is not blocked,

the robot adds an instruction, from itself, to move to that node into its priority queue. In other words, if

the next node on a robot’s path is not occupied, the robot instructs itself to move to the node.

If, however, the next node on the robot’s route is occupied, the robot instructs other robots to give way

while instructing itself to stay put in its current location. The method of determining these instructions

is based on the work from the previous chapters: every robot whose route is blocked plans a swap-path,

and instructs only the robot in the swap-path that is currently neighbouring the swap-path’s unoccupied

node to move to the unoccupied node. This marks the end of the first phase, where all robots accumulate

instructions into their priority queues.

The next phase is the requesting phase. After the planning and propagation phase, all robots choose the

highest priority instruction from their queues and request, based on this instruction, to either move or

stay where they are. Nodes also maintain priority queues of instructions. Every node is responsible for

granting robots access to itself. From the node’s perspective, the instructions received from robots are

therefore requests. Every node receives the requests sent out by the robots and accumulates them into

its priority queue. The ordering in this priority queue is also based on the instructing robot’s priority.

Once the robot has sent its request to a node, its instructions priority queue is cleared.

In the final phase, all requests at the nodes are granted and the robots make the necessary moves. Every

node grants the highest priority request in its priority queue and thereafter clears all other requests

from its queue. This gives the robots authority to move to the node that granted the request. If the

node that granted the request is the one that was already occupied by the robot, the robot stays put.

Due to the method by which requests are sent to nodes, the requests are such that no occupied node

receives a request, unless the requesting robot is already at the node. In other words, only one robot

Department of Mechanical Systems Engineering
University of Miyazaki

39

CHAPTER 5 PARALLEL EXECUTION

is allowed to move to an unoccupied node at a time. Robots can only move to unoccupied nodes or

remain stationary in their current nodes. Therefore, no collisions can occur.

Finally, all granted moves are made and the process repeats until all robots have reached their destina-

tions at least once.

5.4 IMPLEMENTATION

The main program is shown in Algorithm 5.1. In this chapter, the priority assigned to the robots is

equal to their identification number. Lower identification numbers represent higher priorities. As in

previous chapters, the robots’ routes are planned using the A∗ algorithm. Algorithm 5.1 invokes three

sub-routines representing its three phases. The subroutines are Propagate_intentions, Make_requests

and Make_moves represented by Algorithms 5.2, 5.3 and 5.4 respectively.

Using an object-oriented approach, the instructions can be represented as request objects. A request is

an object that has an instructing robot, instructed robot and a node towards which the robot is being

instructed. Therefore, every time the keyword ’instructs’ is used, a request object is created and added

to the instructed robot’s priority queue.

Algorithm 5.2 uses the subroutine from Chapter 4 described in Algorithm 4.2 to plan the swap-path.

The logic of Algorithm 5.2 is similar to that of Algorithms 3.1 and 4.1, but robots now go through an

accumulation and requesting phase before moving. The reason robots need to add instructions from

themselves to their own queues is so that their priorities can be taken into account. A robot’s priority

only comes into play if they manifest in the priority queues of the nodes and robots. A robot is allowed

to instruct higher priority robots than itself. If the higher priority robot has not completed its mission,

it will not request the lower priority instruction because its own instruction with a higher priority is

also in its priority queue. On the other hand, if the high priority robot has completed its mission, it

stops making its own requests and will obey lower priority robots.

In Algorithm 5.3, the robots’ requests are sent to the nodes and the robots’ priority queues are emptied.

Similarly, in Algorithm 5.4, nodes grant the requests and robots make their moves, after which all

remaining requests are cleared from the nodes’ priority queues.

Department of Mechanical Systems Engineering
University of Miyazaki

40

CHAPTER 5 PARALLEL EXECUTION

Algorithm 5.1 Parallel_solve
assign all robot priorities

while not all robots have completed their missions do

for all Robots that have not yet completed their missions do

Current_node← get Robot’s current position

Goal_node← get Robot’s goal position

Route← plan a path from Current_node to Goal_node

Next_node← remove first node from Route

Propagate_intentions(Robot, Current_node, Next_node)

end for

Make_requests()

Make_moves()

end while

Algorithm 5.2 Propagate_intentions

Input: Robot, Current_node, Next_node

if Next_node is not occupied then

Robot instructs itself to Next_node

else

Robot instructs itself to Current_node

Swap-path← Find_swap(Current_node, Next_node)

Unoccupied← remove first node from Swap_path

To_swap_node← remove next node from Swap_path

To_swap_robot← get robot at To_swap_node

Robot instructs To_swap_robot to Unoccupied

end if

5.5 RESULTS

Figure 5.1 shows three robots completing their tasks in parallel using the proposed algorithm. In every

sub-figure, the end result of the three phases of Algorithm 5.1 is shown. In other words, for every

sub-figure, the previous sub-figure shows its initial state. From Figures 5.1(a) to 5.1(c), from turn 0 to

turn 2, there are no conflicts between the robots and they all progress towards their goals.

Department of Mechanical Systems Engineering
University of Miyazaki

41

CHAPTER 5 PARALLEL EXECUTION

Algorithm 5.3 Make_requests

for all Robots do

if Robot’s priority queue is not empty then

Request← poll Robot’s priority queue

To_node← get destination node from Request

Add Request to To_node’s priority queue

end if

empty Robot’s priority queue

end for

Algorithm 5.4 Make_moves
for all Nodes do

if the Node’s priority queue is not empty then

Request← poll Node’s priority queue

Granted← get instructed robot from Request

move Granted to Node

check whether Granted has completed its mission

end if

remove all of Node’s requests

end for

The nodes are named according to their grid positions. Rows are numbered from top to bottom and

columns from left to right. For example, the node in the third row from the top and the second column

from the left is written as [3,2].

In turn 3 shown in Figure 5.1(d), robot 1 instructs robot 2 to move out of the way. Also, robot 2

instructs robot 1 to move out of the way. This instruction is added to robot 1’s priority queue along

with an instruction from itself to stay at grid position [1,2]. When robot 1 selects the highest priority

instruction from its priority queue, the resulting instruction is to to stay at [1,2]. Because [1,2] is

occupied, no other robot will request to move there and robot 1 is granted access to stay. Conversely,

robot 2 also added an instruction from itself to stay at [1,1], but the highest priority instruction in its

priority queue was from robot 1 to move to [2,1], which is the instruction that was requested by robot

2. Because [2,1] was not being requested by any other robot, robot 2 is granted access to move there

and subsequently does so. Meanwhile, robot 3 is able to continue unhindered, and progresses closer to

Department of Mechanical Systems Engineering
University of Miyazaki

42

CHAPTER 5 PARALLEL EXECUTION

its goal.

In the planning and propagation phase of turn 4, robot 1 and 2 request to move to the node at grid

position [1,1]; however, because of robot 1’s higher priority, [1,1] selects robot 1 as the highest priority

request from its priority queue. Robot 1 is granted access to [1,1] and robot 2 has to wait for the next

turn because its request was not granted. Robot 1 and robot 3 reach their destination nodes, determined

by the row major numbering of the grid. Robot 1 and 3 have thus completed their assigned missions

and become idle.

The failed requests are deleted in every turn. Therefore, robot 2’s request from turn 4 to move to [1,1]

is not ’remembered’ in turn 5. In turn 5, robot 2 gives two new instructions: the first is for itself to

stay at [2,1] and the second is for robot 1 to move to [1,2]. Because robot 1 and 3 have become idle,

they cease to give any instructions. However, they are still able to make requests. As a result, any

instruction given by robot 2 is requested by the instructed robot and is granted by the requested node.

Therefore, robot 2 waits at [2,1] while robot 1 clears the way by moving to [1,2].

In turn 6, robot 2 moves to [1,1]. In turn 7, robot 2 once again instructs robot 1 to move out of the way.

In turn 8, robot 2 reaches its destination, thereby ending the execution of the algorithm.

For the random initial configuration shown, the minimum number of moves is 10. The minimum

number of turns is 5. The number of moves and turns generated by the proposed algorithm is 14 and

8 respectively. The optimality of the proposed algorithm was not considered in its design and the

algorithm does not perform optimally in terms of the number of moves or turns. However, the number

of turns obtained is lower than the minimum number of moves, indicating that the algorithm effectively

exploits the parallelism of the system.

From observation of the result presented in Figure 5.1, it is expected that the parallel execution should

result in a significantly higher number of moves. Figure 5.2 shows the resulting number of moves

for a 12×12 workspace using both the series and parallel algorithm. The experiments for series and

parallel execution were conducted from different random starting configurations in each case. It is

clear from the figure that the effects of parallel execution slightly increases the number of moves for

cases with more than 100 robots. Let ρ denote the traffic density, defined as ρ = k/N. Remembering

that the intended purpose of the algorithm is for use in low traffic density situations and noticing that

Department of Mechanical Systems Engineering
University of Miyazaki

43

CHAPTER 5 PARALLEL EXECUTION

(a) turn=0, moves=0 (b) turn=1, moves=3 (c) turn=2, moves=6

(d) turn=3, moves=8 (e) turn=4, moves=10 (f) turn=5, moves=11

(g) turn=6, moves=12 (h) turn=7, moves=13 (i) turn=8, moves=14

Figure 5.1. Parallel completion of missions for 3 robots

ρ = 100/144 = 0.69 is a high traffic density, this slight increase in the number of moves is not of

critical concern.

Figure 5.3 shows the number of moves and number of turns versus the number of robots in a 12×12

workspace for the parallel algorithm. The number of moves and turns are equal in the case where

only a single swap-space is available. The algorithm behaves as if it were a series algorithm in this

case. However, the number of turns drastically reduces as more unoccupied nodes are introduced.

Once again, when there is only a single robot in the workspace, the series and parallel execution are

Department of Mechanical Systems Engineering
University of Miyazaki

44

CHAPTER 5 PARALLEL EXECUTION

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140

n
u

m
b

e
r

o
f

m
o

ve
s

number of robots

Series

Parallel

Figure 5.2. Comparison of series and parallel moves on a 12×12 workspace

equivalent. Intuitively, it is expected that the number of turns should be half that of the number of

moves when two swap-spaces are available. Similarly, if 3 swap-spaces are available 3 times less turns

than moves are expected, and so on. This type of decrease is hyperbolic. Most of the effect of the

hyperbolic decrease happens with the introduction of the first couple of swap-spaces. For example,
100%

5 = 20%→ 80% decrease for introduction of 5 additional swap spaces. The hyperbolic decrease is

plotted in Figure 5.3 and shows an optimistic estimate for the number of turns, given the number of

moves.

There is, however, an upper bound for the number of moves that can be made in a single turn. When

the number of unoccupied spaces is less than the number of robots, the maximum number of moves

per turn is equal to the number of unoccupied spaces. If, however, the number of swap-spaces is more

than the number of robots, the maximum number of moves per turn is equal to the number of robots.

Furthermore, there are factors that negatively affect the ideal hyperbolic decrease. Firstly, the progress

made by low priority robots can be undone by high priority robots if their swap-paths cross each other.

Secondly, robots could choose congested routes while better alternatives are available, leading them to

sit and wait when they could be making progress instead. Therefore, the theoretical upper bound on

the number of moves per turn can never be reached in practice.

Department of Mechanical Systems Engineering
University of Miyazaki

45

CHAPTER 5 PARALLEL EXECUTION

0

1000

2000

3000

4000

5000

6000

1 21 41 61 81 101 121 141

number of robots

n_moves

n_turns

Hyperbolic

Figure 5.3. Moves and turns on a 12×12 workspace for parallel execution

One measure of parallelism is the number of moves per turn. To investigate the parallelism, 10

experiments were performed for every possible traffic density on a 12×12 grid as shown in Figure

5.4. The blue data points represent the number of moves divided by the number of turns for every

experiment. The upper bound is indicated by the solid maroon line. The experiments show that the

algorithm achieves the ideal parallelism when the number of unoccupied nodes or the number of robots

is small. When the number of unoccupied spaces and robots is the same, the highest possible upper

bound is achieved, but the delivered performance is not close to the ideal in this regime due to the

effects explained in the previous paragraph. In spite of the ideal parallelism not being obtained in all

cases, the algorithm fares very well for the first 5 unoccupied spaces achieving roughly 80% reduction

in number of turns as expected by the hyperbolic decrease shown in Figure 5.3. The variance of the

experiments tends to zero as the number of unoccupied nodes approaches one.

For k = N−1 the execution of the series and parallel algorithm is the same. Though the execution is

equivalent in these two cases, the associated computational cost for a centralized planner to plan the

execution is not. In the parallel algorithm, all robots re-plan their routes and swap-paths in every turn,

whereas the series algorithm only requires the route to be planned once per robot and the swap-path

once for every time the swap-space is brought onto a robot’s route. The re-planning in every turn

Department of Mechanical Systems Engineering
University of Miyazaki

46

CHAPTER 5 PARALLEL EXECUTION

1

11

21

31

41

51

61

71

81

1 21 41 61 81 101 121 141

m
o

ve
s/

tu
rn

number of robots

Upper bound

Actual

Figure 5.4. Moves per turn versus number of robots on a 12×12 workspace

for the parallel algorithm is required in order to handle contingencies when higher priority robots

affect the executions of lower priority robots. In Addendum E, Equations (E.18) and (E.22) give the

asymptotic rates on the required number of computations for the series and parallel case as O(N
5
2)

and O(N
7
2 logN) respectively. Figure 5.5 shows the comparative run times and theoretical bounds

for square grids with increasing numbers of nodes for the two algorithms. The provided analytical

bounds on the number of computations are conservative and do not appear to be tight as they eventually

diverge from the experimental data.

The state of the workspace is represented by the knowledge of which node every robot is currently

occupying, entering or deserting. Consider the case where there are k < N robots, each with its own

processor, that are provided with the state of the workspace and plan their routes and swap-paths

independently. In this case, the computational load for parallel execution is only that of the BFS and A∗

per robot which is O(N logN). Assuming that all robots synchronously start their planning phases, this

implies an overall O(N logN) time associated with the planning phase for all robots. In other words,

before every moving phase a O(N logN) waiting time is expected.

This is significantly shorter than the centralized serial time of O(N
5
2). In the serial case, a single O(N

5
2)

Department of Mechanical Systems Engineering
University of Miyazaki

47

CHAPTER 5 PARALLEL EXECUTION

planning phase is required after which all robots execute the plan without pausing. It would also be

possible to shorten this planning time by starting execution before the entire plan is available.

Finally, the required number of moves remains O(N
3
2) regardless of whether the series or parallel

algorithm is employed. It is thus concluded that Figure 5.5 represents the run times for simulating

the two algorithms for the case where a centralized planner is used, but there exists an opportunity to

significantly improve the computational time associated with the parallel algorithm when deployed on

real robots.

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000

ti
m

e
 [

s]

number of nodes

time parallel

O(N^(7/2)*log(N))

time series

O(N^(5/2))

𝑂(𝑁
7
2 log 𝑁)

𝑂(𝑁
5
2)

Figure 5.5. Series and parallel run times on square grids with k = N−1

The effect of a on the number of turns can be observed in Figure 5.6. The trend is the same as for the

series execution: the number of turns increases non-linearly as the aspect ratio decreases. This leads to

square grids being the ideal geometry for maximum efficiency.

From Equation (B.6), the limiting behaviours of the number of moves and, therefore the number

of turns nturns are proportional to a multiplier that is function of the aspect ratio a. By setting the

multiplier equal to 1 for a = 1, the following relation can be written:

Department of Mechanical Systems Engineering
University of Miyazaki

48

CHAPTER 5 PARALLEL EXECUTION

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140

n
u

m
b

e
r

o
f

tu
rn

s

number of robots

2x72

3x48

4x36

6x24

8x18

9x16

12x12

Figure 5.6. Comparison of turns on h×w workspaces for parallel execution

nturns ∝
1
2
(a−

1
2 +a

1
2) (5.1)

Equation (5.1) shows that there exists a singularity at a = 0. Figure 5.7 shows a plot of Equation (5.1).

In sub-section 4.4, it was mentioned that the effect of the aspect ratio becomes significant at low values

of a. This can be seen from Figure 5.7 where for a = 0.41 the number of turns is expected to be just

10% higher, but for values of a < 0.41 the number of turns increases rapidly as a→ 0.

5.6 DISCUSSION

For an assignment of tasks, the term “makespan” is used to refer to the total time required to complete

all the tasks. The makespan is equal to the number of moves in the serial case and equal to the number

of turns in the parallel case. The results show that parallelism is successfully exploited as the makespan

is significantly lower for the parallel algorithm than for the series algorithm in general.

In this chapter, the priorities of the robots were set equal to their identification numbers, which are

Department of Mechanical Systems Engineering
University of Miyazaki

49

CHAPTER 5 PARALLEL EXECUTION

0.41, 1.10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

Aspect ratio (a)

1

2
(𝑎−

1

2 + 𝑎
1

2)

Figure 5.7. The effect of the aspect ratio on the number of moves/turns

arbitrarily assigned. The priorities can, however, be assigned in any way as long as no two priorities

are equal. The implementation of robot priorities results in the highest priority robot dictating the

movements in the workspace. If only one swap-space is available, a single robot dictates the entire

workspace until its mission is complete. Once the dictating robot completes its task, it ceases to give

instructions and the robot with the next highest priority assumes control over all robots in the workspace,

including the previous dictating robot. If the traffic density is low, the dictated movements tend to be

local to the dictating robot. Conversely, if the traffic is dense, it leads to far field dictation.

Interference in the swap path of higher priority robots by lower priority robots can only assist the

higher priority robots. The interfering robot’s only allowable interference is to move a swap-space

onto the dictating robot’s swap-path. This swap-space then becomes the closest open space to the

dictating robot and the lower priority robot loses its control over it.

The nodes are said to grant or deny requests, which means that they act as robots. The nodes can in fact

be seen as simple robots. Every node, however, does not require its own processor or any other type of

physical embodiment, apart from the fiducial markers. The nodes can in practice be represented by

software robots which can be simulated by a single or multiple servers in the warehouse.

Department of Mechanical Systems Engineering
University of Miyazaki

50

CHAPTER 5 PARALLEL EXECUTION

5.7 CONCLUSION

In its current form, the parallel algorithm can be implemented in a synchronous fashion. All robots

are required to depart from their starting nodes and reach their destination nodes at the same time.

To achieve this, a supervisory controller with good tracking performance would be required. Even

under good tracking performance, discrepancies are always present due to communication delays

and variances in the robot hardware. If the nodes are used as control points such that each robot is

only allowed to advance when all other robots have reached their respective nodes, the executions of

the robots is synchronized. This equivalent to a “synchronization barrier” employed in the design of

distributed systems, as discussed by Raynal [56]. In the next chapter, the work from this chapter is

extended to the continuous time domain under the assumption of asynchronous execution.

Department of Mechanical Systems Engineering
University of Miyazaki

51

CHAPTER 6 ASYNCHRONOUS EXECUTION

6.1 INTRODUCTION

In previous chapters, time is divided into discrete steps. In every discrete time step, robots either stay

at their current position, or transition to a neighbouring node. All transitioning robots do so in the

same time step, leading to synchronous execution. In real systems, robots exist in continuous time

where bodies must accelerate and decelerate to move from point to point. The hardware required to

enforce these accelerations is subject to variances which leads to variances between robots in the time

required to move between points. Therefore, algorithms need to account for this inherent asynchrony

when applied in practice.

The work from the previous chapter can be synchronized by employing a synchronization barrier.

Implementing a synchronization barrier could result in a system wide failure if a single robot fails

and never reaches its goal. In other words, the stringent requirements on the synchronization of

all robots is safe, but is not robust. Furthermore, system-wide waiting is regular side-effect of the

synchronization barrier. Therefore, the synchronization barrier incurs an opportunity cost due to lost

potential progress.

An algorithm that effectively handles the inherent asynchrony in the system is desirable. Such an

algorithm should require minimal communication and dependence amongst robots and should also

provide a starvation-freedom guarantee. This chapter is devoted to extending the work to a continuous

time, asynchronous version of the visitors’ algorithm.

CHAPTER 6 ASYNCHRONOUS EXECUTION

6.2 PROBLEM STATEMENT

In the previous chapter, the planning, requesting and moving phases are synchronized. That is, all

robots complete their planning before requesting starts, all nodes grant access before moving starts

and all moves are made before the next cycle starts. For the system to predictably solve the visitors’

problem, synchronization barriers are required for each of these phases. In other words, timing

assumptions on the underlying processes are required to ensure safety and starvation-freedom.

The phases, when abstracted to the asynchronous case, can be thought of as states. In the synchronous

case, all robots are in the same state at the same time. In the concept of asynchronous execution, there

is no underlying timing assumption on the processes. All processes can execute at different speeds

and state transitions can occur at any point in time for a given robot. In an asynchronous system, it is

possible for different robots to be in different states at the same time. An algorithm that is suitable for

the asynchronous case must ensure that the robots and nodes behave safely under the assumption that

the robots are in different states at the same time. Apart from the safety requirement, the system must

also be starvation free in order to ensure that all assigned tasks are eventually completed.

By synchronizing all moves in the system, the synchronization barriers synchronize the system such

that there are turns. Under the assumption of asynchrony, the notion of a turn is no longer defined as

there is no system-wide synchronized start or end of a turn.

6.3 PROPOSED SOLUTION

In an asynchronous system, there are no defined system-wide phases for planning, requesting, granting

requests and motion. It has to be decided when to execute each of these operations.

To ensure the safety property, nodes grant only a single request at a time. The requests are only granted

when the node is empty. Every node represents a section of the workspace. Nodes are only set to empty

once the robot that was granted access to it previously has fully exited the section. Exiting a section is

defined as having reached a neighbouring node. This means two or more robots cannot head to the

same point in space at the same time and thus collisions are prevented. While a node is occupied, being

moved to or being deserted, it cannot grant access and simply accumulates requests. Granting of access

Department of Mechanical Systems Engineering
University of Miyazaki

53

CHAPTER 6 ASYNCHRONOUS EXECUTION

is therefore done either when a node is set to empty or when it is empty and receives its first request.

Furthermore, when a node grants a request, all other requests at that node are declined. The declined

robots receive an expiry notice that must be relayed to the instructing robot. Motion starts when a

robot is granted access to a node and ends when it reaches the node that granted the access.

Assigning a task to a robot means that the robot gets a mission. To ensure starvation freedom, any

robot that has not completed its mission must always have an intention to do so. The intention is

communicated to other robots in the form of an instruction and is known as the pending instruction.

As before, robots can instruct themselves too. Robots immediately clear their pending instructions

upon receiving an expiry notice from a node.

Planning is done initially when the robot receives its task, or upon expiry of its pending instruction.

Instructions expire when they are either granted or declined. A robot’s pending instruction can be

declined in one of two ways: 1) a requested node grants access to another robot, or 2) an instructed

robot requests another robot’s instruction.

When the instruction is declined by a robot, the declining robot also sends expiry notifications to all

other instructing robots. The reason for expiry for all but one robot is that their instructions have been

declined. For a single robot, its instruction expires because the instructed robot is granted access to

the instructed node. Expiry notifications trigger replanning for the instructing robots. The state of the

workspace continually evolves, which could render old plans null and void. As a result, replanning is

done frequently.

All robots, whether their missions are complete or not, must receive and act on their instructions.

Acting on an instruction means to request access to the node that a robot is being instructed to. To

clearly define a precedence relation, as before, all robots are assigned a unique positive integer priority.

When robots have not completed their missions, nodes decline instructions from lower priority robots.

Conversely, when robots’ missions are complete, nodes grant instructions from robots even if their

priorities are lower than the instructed robot.

Requesting is done when the first instruction is received, and is updated upon receiving new instructions.

To avoid conflicting situations where robots are granted access to more than one node at a time, they

only request access to a single node at a time. As robots continuously receive new instructions, an

Department of Mechanical Systems Engineering
University of Miyazaki

54

CHAPTER 6 ASYNCHRONOUS EXECUTION

instruction of higher priority than the requested instruction might arrive. Therefore, robots are required

to update their requested instructions continuously as higher priority instructions arrive. When updating

the requested instruction, the previously sent request has to be withdrawn from its node in order to

prevent receiving access to more than a single node. When the robots’ requests are accepted or rejected,

the instructing robot must be notified to ensure that it has a pending instruction as long as its mission is

not complete. It is the requesting robot’s responsibility to relay the expiry notification to the instructing

robot when it is declined by a node.

6.4 IMPLEMENTATION

Section 2.4 introduces ALPHABET SOUP: an open source MFS simulator. ALPHABET SOUP

provides a continuous time framework to simulate the robot dynamics and is therefore modified for

the purposes of this chapter. In these experiments, all word and letter stations as well as buckets are

removed and the workspace is represented by a rectangular grid.

Figure 6.1 shows how an arbitrary node and robot’s states are synchronized when the robot enters and

leaves the node. The node has four distinct states: “empty”, “being entered”, “occupied” and “being

exited”. The robot has three distinct states: “waiting”, “moving” and “halted”. In Figure 6.1, the robot

first halts and waits at a neighbouring node before moving toward the node in question. The robot then

halts and waits at the node for some time before moving to a neighbouring node. Finally, the robot

halts and waits at the neighbouring node at which point the node in question is set to empty.

Empty Node:

Robot:

Empty Being Entered Occupied Being Deserted

Moving Waiting Moving Waiting

Halted Halted

Halted

Waiting

Moving

time

Figure 6.1. Robot/node synchronization of states

Department of Mechanical Systems Engineering
University of Miyazaki

55

CHAPTER 6 ASYNCHRONOUS EXECUTION

Figure 6.2 shows the three states of the robot. The halted state serves two purposes: 1) it prepares

the robot to enter the waiting state, and 2) sets its previous node to empty so that other robots can

approach the node. Also shown in Figure 6.2, when the robot reaches its next node and comes to a

halt, a “set empty” notification is sent to its previous node to indicate that it has successfully exited

the node. The code contained in the dashed box in Figure 6.2 manifests on every robot. The variable

Robot is therefore local to every robot, but for every robot it is global in terms of all its sub-routines.

In other words, Robot always refers to the robot executing the algorithm.

It is indicated in Figure 6.2 that the robot must be granted access before transitioning from the waiting

to the moving state. Conversely, the transition from halted to waiting is unconditional. Within the

waiting state shown in Figure 6.2, three sub-states exist: “granted”, “planning and propagation” and

“declined”. The details of the waiting state are shown in Figure 6.3. Tracing through Figure 6.3, it is

clear that if the robot is not “granted”, not “not idle with a pending request” and not “declined”, it

continuously checks these three conditions until one of them changes and triggers one of the three

sub-state transitions. This happens continually until the “granted” sub-state is triggered, which prepares

the robot for the transition to its moving state. Furthermore, the continuous checking, together with the

planning sub-state, ensures that a robot always has a pending instruction, unless it has completed its

mission and was not assigned a new one.

Robots only plan and communicate their intentions while stationary in the waiting state. The planning

procedure is shown in Algorithm 6.1 and is based on the ideas from the previous chapters: The robot

plans the route from its current node to its destination node. If the next node on this route is unoccupied,

it requests to go there; if the next node is occupied, the robot looks for a swap-path so that its route can

become unblocked by instructing other robots to move out of the way along the swap-path. Because

robots are now operating in continuous time, the “being entered” and “being deserted” node states have

to be taken into consideration. In the planning phase “being entered” is treated as being occupied and

“being deserted” is treated as being empty. Algorithm 6.1 employs the Find_swap procedure shown

in Algorithm 4.2, but with the important predicate that the BFS looks for the first node that is either

empty or being deserted. This version of the algorithm is denoted as Find_swap∗. Similarly, when

determining which robot to instruct, the instructed robot can either be entering the node or occupying

it. Therefore, both robots coming into a node or stationary at a node can take requests from robots that

need to use the node. However, departing robots are never instructed.

Department of Mechanical Systems Engineering
University of Miyazaki

56

CHAPTER 6 ASYNCHRONOUS EXECUTION

WaitingHalted Moving

distance to goal < tolerance
& speed==0

Granted

RobotRobot

expiry notification
relayed by

instructed robot

assign
tasks from
manager

Instruction
from robot

Request to
node

“withdraw request”
notice to node

“set empty”
notification to

node

Figure 6.2. Robot state flow

Granted

Plan and Propagate

Declined

WaitingWaiting

granted? YES

not idle & no
pending

instruction?

NO

To Moving

YES

declined?

NO

YESNO

From Halted

request to
node

instruction
to robot

“withdraw
request”
notice to

node

relay expiry
notification from node

 to instructing robot

grant/decline
notification from

node

assign
tasks from
manager

expiry notification
relayed by

instructed robot

Figure 6.3. Robot waiting state

Department of Mechanical Systems Engineering
University of Miyazaki

57

CHAPTER 6 ASYNCHRONOUS EXECUTION

Algorithm 6.1 Plan_and_propagate
Current_node← get Robot’s current node

Goal_node← get Robot’s destination node

Route← plan a path from Current_node to Goal_node using A∗

Next_node← remove first node from Route

if Next_node is empty or being deserted then

Instruction← Robot instructs Robot to Next_node

set Robot’s pending instruction to Instruction

add Instruction to Robot’s instructions priority queue

Update_requested(Robot)

else if Next_node is occupied or being entered then

Swap-path← Find_swap∗(Current_node, Next_node)

Unoccupied← remove first node from Swap_path

To_swap_node← remove next node from Swap_path

To_swap_robot← get the occupying or entering robot at To_swap_node

Instruction← Robot instructs To_swap_robot to To_swap_node

set Robot’s pending instruction to Instruction

add Instruction to To_swap_robot’s instructions priority queue

Update_requested(To_swap_robot)

end if

Robots maintain a priority queue of instructions. This allows the robots to accumulate instructions

when moving and accept multiple instructions from different robots. The highest priority instruction

from each robot’s queue is sent to its corresponding node. When a new instruction is given to a robot,

the robot’s requested instruction is updated in order to ensure that the requested instruction is always

the one with the highest priority. The procedure by which the requested instruction is updated is shown

in Algorithm 6.2. Firstly, if the robot has a requested instruction, it withdraws the instruction from its

corresponding node. The robot also clears its requested instruction, but does not remove it from its

instructions priority queue. Next, it polls its priority queue for the highest priority instruction. If the

corresponding node of the polled instruction has become occupied or is being entered by another robot,

the instructing robot’s instruction has failed and it is notified with an expiry notification. Furthermore,

because the instruction has been polled, it is no longer in the instructed robot’s instructions priority

queue. If, however, the corresponding node is empty or being deserted, the instructed robot re-enters the

Department of Mechanical Systems Engineering
University of Miyazaki

58

CHAPTER 6 ASYNCHRONOUS EXECUTION

instruction into its priority queue and sets the instruction as its requested instruction. The robot keeps

polling its instructions priority queue until it finds a non-failed instruction or empties the queue.

Algorithm 6.2 Update_requested

Input: To_update_robot

Withdraw_requested(To_update_robot)

InstructionsPQ← get To_update_robot’s priority queue of instructions

while InstructionsPQ has elements do

Updated← poll InstructionsPQ

Node← get Updated’s node

if Node is occupied or being entered then

Instructing← get Updated’s instructing robot

Send Instructing an expiry notification

else

add Updated to InstructionsPQ

Set To_update_robot’s requested instruction to Updated

break while

end if

end while

Both the “Halted” and “Granted” subroutines manage boolean variables that indicate states and sub-

states as well as other local variables that hold node addresses for next, previous and current nodes.

In addition, the nodes have similar variables for keeping track of their states and which robots are

occupying, entering and exiting them. The required assignments for these variables are intuitive and

easy to implement in practice, but clutter the pseudo-code. Therefore, these details are not shown in

the pseudo-code for the sake of brevity and clarity.

Algorithm 6.3 shows the procedure for the granted sub-state. Once granted, the robot’s pending

instruction is cleared. The granted node removes all of its other requests from its priority queue and

sends an expiry notification to all declined robots. The granted robot also withdraws its requested

instruction from the node using the routine in Algorithm 6.4. Finally, the granted robot clears its

instructions priority queue and sends expiry notifications to all robots that gave it instructions.

When executing Algorithm 6.4, a robot removes itself from the requested node’s requests priority

queue. The robot also clears its requested instruction. This withdraw operation prevents the robot

Department of Mechanical Systems Engineering
University of Miyazaki

59

CHAPTER 6 ASYNCHRONOUS EXECUTION

Algorithm 6.3 Granted
Granted← Robot’s granted waypoint

Clear Robot’s pending instruction

Remove all Granted’s requests and send expiry notifications to declined robots

Withdraw_requested(Robot)

Clear Robot’s instructions priority queue and send expiry notifications to declined robots

from re-requesting the granted node again next time that its requested instruction is updated. This

is critical as it ensures that the robot will not be granted access to a node that is not one of its direct

neighbours. In Algorithm 6.4, real robots send a “withdraw request” notification to the node with

every invocation of Algorithm 6.4. The sent message is also indicated in Figures 6.2 and 6.3. The

ALPHABET SOUP implementation does not simulate these communications. In the ALPHABET

SOUP implementation, the “withdraw request” is represented by removing the requested instruction

directly from the requested node’s priority queue. Similarly, “send expiry notification” in Algorithms

6.2 and 6.3 is represented in ALPHABET SOUP by directly setting the expired robot’s pending request

to null.

Algorithm 6.4 Withdraw_requested

Input: To_withdraw_robot

Requested← get To_withdraw_robot’s requested instruction

Node← get Requested’s node

Send withdraw request to Node

Clear To_withdraw_robot’s requested instruction

Requests result from instructions. As the instructed robot is always the one making the requests, the

node informs the instructed robot of its success or failure. Upon notification, the instructed robot

removes the failed instruction from its instructions priority queue. However, the instructing robot must

also be notified of the expiry of its pending instruction. The instructed robot therefore has the task

of relaying the grant or decline notice as an expiry notification to the instructing robot. In this sense,

instructions are propagated and, when they expire, a notification is back propagated. Therefore, both

grant and decline notifications translate to expiry notifications that are relayed to the instructing robot.

Finally, the denied robot updates its requested instruction using the same procedure as before. The

flow of these messages between nodes and robots is depicted in Figures 6.2 and 6.3. If a robot acts on

its own instruction, it relays the expiry notification to itself.

Department of Mechanical Systems Engineering
University of Miyazaki

60

CHAPTER 6 ASYNCHRONOUS EXECUTION

Algorithm 6.5 Declined
Requested← get requested instruction

Instructing← get Requested’s instructing robot

Clear Instructing’s pending instruction

InstructionsPQ← get robot’s priority queue of instructions

Remove Requested from InstructionsPQ

Update_requested(Robot)

In the moving state, a bang-bang controller controls the robot’s heading, acceleration and deceleration.

Firstly, the heading is simply set towards the target node. ALPHABET SOUP currently does not model

the rotational acceleration and velocity of the robots, changing its heading is therefore instantaneous.

This would be a problem if robots were following curved trajectories; however, because robots

simply move in straight lines and only change their heading when stationary, the underlying dynamics

are equivalent to omni-wheel robot dynamics. Once the heading is set, the robot accelerates at its

maximum acceleration until it reaches its maximum velocity, if space allows. The robot then cruises at

its maximum velocity until it is its minimum stopping distance away from the target, at which point it

starts a maximum deceleration to zero. If the space between the nodes does not allow the robot to reach

its maximum velocity, the robot simply goes from maximum acceleration to maximum deceleration,

leading to a triangular velocity profile between the start and end points.

Apart from the routines executed by the robots, the nodes are also required to perform certain functions.

The control flow of the nodes is shown in Figure 6.4. Requests are sent to the nodes as messages

from the robots. If a node is empty and has no other requests, it immediately grants the first request

it receives. This results in a first come, first served behaviour when there are no conflicting requests.

The nodes notify granted and declined robots by sending them messages as shown in Figure 6.4. The

nodes keep a priority queue of requests. The nodes accumulate requests when being moved to or being

deserted by adding the requests to their priority queue. Requests are also granted when nodes are

set empty. The nodes are set empty by robots that were previously granted access to them and have

arrived at their neighbouring nodes after departure. The nodes become empty when they receive a “set

empty” notification from the robot. Once the node is empty, it grants the highest priority request from

its priority queue. Every time a robot is granted access to a node, the node empties its requests priority

queue while notifying all robots whose instructions have failed as well as the single robot whose

instruction has succeeded. When robots no longer need access to the node, they send a “withdraw

Department of Mechanical Systems Engineering
University of Miyazaki

61

CHAPTER 6 ASYNCHRONOUS EXECUTION

request” notification. Upon receiving this notification, the node removes the request of the said robot

from its priority queue.

Add request to
priority queue

Node empty?

Priority queue has
elements?

YES

Await empty state

Await first request
to node

NO

NO

YES

request from
robot

Grant request
grant/decline
notification to

robots

“set empty”
notification from

robot

NodeNode

“withdraw request”
notice from robot

Remove request
from priority queue

Figure 6.4. Node control flow

The Grant_request sub-routine is shown in Algorithm 6.6. Requests are polled from the priority queue

until the queue is empty or a request is granted. Every polled request is tested for its’ feasibility.

Requests are feasible when the instructed robot is not already granted by another node, and the

instructing robot has higher priority than the instructed robot, or when the instructed robot is idle. The

first feasible request from the priority queue is granted. Once a request is granted, all other requests,

whether they are feasible or not, are removed from the node and expiry notifications are sent to the

declined robots.

6.5 STARVATION-FREEDOM

The picking stations can be viewed as clients in the system. The clients cannot afford to wait indefinitely

for a product to arrive. In the system under consideration, every robot in the system is executing the

process of visiting its destination node. If every process eventually successfully terminates, the clients

Department of Mechanical Systems Engineering
University of Miyazaki

62

CHAPTER 6 ASYNCHRONOUS EXECUTION

Algorithm 6.6 Grant_request

while Node’s priority queue is not empty do

Request← poll Node’s priority queue

Instructed← get instructed robot from Request

Instructing← get instructing robot from Request

if (Instructing’s priority < Instructed’s priority OR Instructed is idle) AND Instructed is not

already granted then

Send granted notification to Instructed

break

else

Send declined notification to Instructed

end if

end while

remove all of Node’s requests and send declined notifications to their instructed robots

do not wait indefinitely for their products. System-wide starvation-freedom is therefore essential in

this context and is proved in this section.

Every robot has a unique integer priority. Smaller integers have higher priorities. Every task has a

unique integer task number. Every time a new task is created, its number is incremented. Every time

a robot is assigned a task, its priority is set equal to the task number. Specifically, the following two

cases are considered: 1) every robot is assigned a single task and 2) every robot is assigned a task

initially and, when its task is complete, it receives a new one.

Theorem. Every assigned task eventually successfully terminates.

Proof. Consider the highest priority robot in the workspace, which is referred to as the critical

robot. The critical robot’s instructions are unconditionally obeyed. Every time the critical robot’s

pending instruction expires, a new pending instruction is created. The new instruction is created

before the previous one is completed because completing an instruction takes longer than planning

and communicating it. The time for a robot to transition between two nodes is assumed to be finite.

The series of instructions generated by the critical robot therefore lead to a series of granted requests,

which progress an open space towards the next node on its path if it is blocked. If the next node on

Department of Mechanical Systems Engineering
University of Miyazaki

63

CHAPTER 6 ASYNCHRONOUS EXECUTION

the critical robot’s path is not blocked, it is guaranteed access to the next node. The waiting time

between assignment of a task and its completion for the critical pebble monotonically decreases as

time progresses. As a result, the critical robot is guaranteed to eventually complete its assigned task.

Upon completion of the critical robot’s task, another robot becomes critical. Therefore, all robots

eventually complete their missions.

The route of the critical robot is re-planned with every instruction expiry. The length of the route

must remain unchanged or reduce in length when re-planning. Similarly, the swap-path may also be

re-planned with every instruction expiry. The length of the swap-path must monotonically decrease

between subsequent replanning steps.

6.6 RESULTS AND DISCUSSION

Experiments are performed to assess the efficacy of the proposed method. In the experiments, every

robot is initially randomly placed at a unique node on the grid. The robots are assigned destination

nodes that are to be visited. In Figure 6.5, for the purpose of visualization, the robots colour the

destination nodes purple upon visiting them. In addition, robots that have completed their tasks are

highlighted with a red border.

The assigned destination nodes in previous chapters were determined by the robot identification number

and row-major numbering of the nodes on the grid. This is the original destination assignment of the

15 puzzle and was chosen for the development of the algorithms in this work. Figure 6.5(a) shows

the resulting final state for 15 robots on a 5×5 grid. It is clear that all robots have completed their

tasks as they are all highlighted with a red border. Counting the number of visited nodes shows 15

highlighted in purple. Therefore, every robot visited its unique target location at least once. The robots

are not at their assigned locations at the time when the last robot reaches its target node as this is not a

requirement of the visitors’ rules.

In contrast with the original 15 puzzle rules, the destinations of the robots need not necessarily be

unique. The proposed algorithm is capable of solving any destination assignment for any number of

robots as long as a single space is left unoccupied in the workspace. As an example, the destination

assignments are made randomly in Figure 6.5(b). The random target assignment leads to more than one

Department of Mechanical Systems Engineering
University of Miyazaki

64

CHAPTER 6 ASYNCHRONOUS EXECUTION

(a) Row-major destination assignment (b) Random destination assignment

(c) Single central node destination assignment (d) Single eccentric node destination assignment

Figure 6.5. Various destination assignments successfully completed

robot visiting the same destination, this is revealed by counting the purple nodes and comparing it to

the number of robots. Only 10 distinct nodes were visited, but all 15 have completed their tasks.

Under the assumption that more than one robot may be assigned the same destination, the original

15 puzzle rules immediately deem such an assignment infeasible. As opposed to being an optional

criterion, this kind of assignment necessitates the assumption that robots need not be at their final

location at the final time. Furthermore, this kind of assignment occurs frequently in MFS, for example,

when more than a single robot is sent to the same picking station.

In fact, all robots can be sent to the same single node as shown in Figures 6.5(c) and 6.5(d). Any

Department of Mechanical Systems Engineering
University of Miyazaki

65

CHAPTER 6 ASYNCHRONOUS EXECUTION

node can be chosen for the assignment, for example in Figure 6.5(c), the central node was chosen

and, in Figure 6.5(d), an eccentric node was chosen. In each case, all robots can be seen to have

successfully reached their target nodes at least once. Although there is a very large number of possible

task assignments, the presented samples are representative of the algorithms’ capabilities.

When a robot is transitioning between two nodes, it cannot be stopped midway. If another robot

instructs it away from the node that it is heading to, the robot adds the instruction to its priority

queue and evaluates its priority queue upon arriving at the next node. If the instructing robot has the

appropriate priority, it is possible for the instructed robot to return to its previous node immediately

upon arrival at its next node. It is observed that some robots experience oscillations in the case where

all robots are sent to the same target node. This is due to the fact that robots do not check whether

all robots on their swap-paths are of lower priority before giving instructions. As a result, the first

couple of instructions along the swap-path are granted until one of them become rejected. When this

happens, the robot at the interface between the allowed and rejected instruction obeys the swap-path

instruction, followed by its own instruction, followed by the swap-path instruction again and so on.

This is the mechanism that causes the oscillations. The oscillations are not desirable, but do not affect

the starvation-freedom of the algorithm.

The purpose of the proposed method is to facilitate starvation-free delivery in MFS. In order not to

constrain the study to a single warehouse layout, random cyclic task assignments on various rectangular

grids are studied. The assignments are cyclic from the robots’ viewpoint: once a robot completes a

task, it receives a new one. Firstly, a version of the simulator is developed for debugging and observing

the robot behaviour. In this simulator, the robots pause at their target nodes for 1.5s while highlighted

with a red border as displayed by the Graphical User Interface (GUI) shown in Figure 6.6. This

visualizes the experiment in an efficient manner. Asynchrony is introduced into the system by setting

the maximum velocity and acceleration of each robot to a bounded random number. Despite the

asynchrony, the robots are found to complete their assigned tasks successfully in a finite time. In real

systems, communication delays and failures are present, which have not been simulated. The proposed

algorithm has proven itself under asynchronous conditions and it is expected that it could be robust

against these delays and failures.

It should be noted that the tasks are not required to be completed in a specific order. Figure 6.7 shows

the completion order versus task number for various numbers of robots. In the case where there is only

Department of Mechanical Systems Engineering
University of Miyazaki

66

CHAPTER 6 ASYNCHRONOUS EXECUTION

Figure 6.6. GUI for cyclic mission completion with 30 robots on a 9×16 grid

1

51

101

151

201

251

1 51 101 151 201

ta
sk

 n
u

m
b

e
r

order completed

50 robots

30 robots

15 robots

1 robot

Figure 6.7. Task number versus order of completion

a single robot, the tasks are completed in the order that they are assigned; however, as the number

of robots increases, it becomes more likely that a low priority robot will be close to its destination

without any obstructions. As a result, the number of tasks that are completed in a different order than

they were assigned increases as the number of robots increase. Despite the fact that the completion is

not completely ordered, every task is guaranteed to eventually complete. Furthermore, the underlying

trend in Figure 6.7 is linearly increasing, which indicates that orders are completed roughly in the

order that they are assigned.

Department of Mechanical Systems Engineering
University of Miyazaki

67

CHAPTER 6 ASYNCHRONOUS EXECUTION

In MFS, the product throughput is to be maximized. The number of completed missions in a fixed

period of time serves as a proxy for the throughput. It is expected that the throughput depends on the

number of robots and aspect ratio of the grid. In previous experiments, the GUI was used to verify the

correct implementation of the proposed algorithm. In the following experiment, the GUI is suppressed

in order to accelerate the speed at which trials can be performed. The robots no longer pause at their

target nodes; they are immediately assigned a new task and proceed to advance towards it. In the

experiment, nodes are placed 1.3m apart, robots accelerate at 1.3m/s2 and have a maximum velocity

of 1.3m/s. Robots have a radius of 0.4m which leaves a tolerance of 0.5m between adjacent robots

on the grid. The results were obtained using a laptop with an Intel Core i7 with 2.9GHz clock-speed

and 16GB of memory. For the sake of repeatability, the robot velocities and accelerations are not

randomized. Once again, the rectangular grid with 144 nodes is chosen to facilitate investigation of

the effect of the aspect ratio. For every aspect ratio, the number of robots is swept from 1 to 143. For

every number of robots, a trial of 3600 simulated seconds is performed while measuring the required

CPU time and the number of completed tasks.

The number of completed missions versus number of robots is shown in Figure 6.8(a). The variance in

the result is due to the randomness of the task assignment and initial placement. For all aspect ratios, the

maximum throughput is obtained for about 30 robots. This gives a traffic density of ρ = 30/144 = 0.21.

The highest throughput is achieved when the workspace is square and performance gradually decreases

as the aspect ratio decreases. In cases of severely low aspect ratios, the difference in number of

completed missions between the optimal traffic density and sub-optimal densities is less pronounced

than in cases with aspect ratios closer to a = 1. Even though the algorithm is capable of allowing

143 robots to simultaneously use the workspace, for the square grid 30 robots complete around 13

times more tasks in a fixed period of time. Therefore, under normal circumstances the MFS warehouse

should not be overfilled to traffic densities exceeding ρ = 0.21. In spite of this, the proposed algorithm

provides the guarantee of starvation-freedom for k = 1,2...N−1 robots and is therefore robust.

As the aspect ratio becomes smaller, more CPU time is required as seen in Figure 6.8(b). However,

all comparative simulation times are in the same order of magnitude, with at most a 32% difference

between them. In the high traffic density simulations, the simulation runs about 360 times faster than

real time. In simulation, the continuous time dynamics of all the robots in the system, their routes and

swap-paths are centrally computed by the CPU. In reality, every robot has its own processor and their

routes and swap-paths will be planned independently on k processors. In addition, the robots do not

Department of Mechanical Systems Engineering
University of Miyazaki

68

CHAPTER 6 ASYNCHRONOUS EXECUTION

need to simulate their dynamics in the real implementation. It is therefore safe to conclude that the

proposed algorithm is fast enough to be implemented in real time. Counter-intuitively, the required

CPU time decreases when the traffic density exceeds ρ = 116/144 = 0.81. The overall simulation time

is dependent on many factors including route and swap-path planning. The time required for route and

swap-path planning is dependent on the traffic density, and from the observed results this requirement

decreases as the traffic density exceeds ρ = 0.81. This is probably due to robots replanning less

frequently as a result of their instructions and requests being held in node and robot priority queues

for longer intervals before they expire. Finally, it is observed that the simulation times for four of the

experiments are almost identical in Figure 6.8(b). Only for aspect ratios below a = 6/24 = 0.25 does

the run time increase significantly.

6.7 CONCLUSION

The proposed algorithm successfully allows the visitors’ problem to be solved in continuous time under

severe asynchrony. A proof of starvation-freedom of the algorithm has been provided and extensive

simulations show that the algorithm is robust. All target node assignments are feasible and robots

can be assigned to go to any node without affecting the starvation-freedom of the algorithm. It has

been shown that low traffic density is essential for high throughput and that the algorithm continues

to function in severely congested scenarios. It has also been shown that small grid aspect ratios

adversely affect the throughput. Finally, the algorithm is shown to be computationally permissible

as the simulation is two orders of magnitude faster than real time for the case with 143 robots. The

simulation run times are merely an indication of the computational permissibility of the algorithm.

Real robots will independently perform planning on k processors leading to increased computational

permissibility and scalability.

Department of Mechanical Systems Engineering
University of Miyazaki

69

CHAPTER 6 ASYNCHRONOUS EXECUTION

0

500

1000

1500

2000

2500

1 21 41 61 81 101 121 141

co
m

p
le

te
d

 m
is

si
o

n
s

number of robots

12x12

9x16

8x18

6x24

4x36

3x48

2x72

(a) Number of completed missions versus number of robots for 3600 seconds of simulated time

0

2

4

6

8

10

12

1 21 41 61 81 101 121 141

ti
m

e
 [

s]

number of robots

12x12

9x16

8x18

6x24

4x36

3x48

2x72

(b) Required CPU time versus number of robots for 3600 seconds of simulated time

Figure 6.8. Cyclic mission completion in simulated continuous time

Department of Mechanical Systems Engineering
University of Miyazaki

70

CHAPTER 7 CONCLUSION

In this chapter, the findings of this work are summarized, performance guarantees and their limitations

are given and the general applicability of the visitors’ rules is considered. Lastly, suggestions for

further work are given.

7.1 SUMMARY

Most of the proposed approaches to multi-robot path planning presented thus far are not amenable to

MFS. The approaches that are amenable to MFS either give no starvation-freedom and asymptotic

performance guarantees or are computationally expensive. In this work, an algorithm for the visiting

pebble motion on rectangular grids has been proposed. Rectangular grids and workspaces composed

of multiple rectangular grids provide an appropriate representation for MFS workspaces.

A serial planning algorithm for the case where only a single swap-space is available has been presented.

The proposed algorithm has been extended to the case where multiple unoccupied spaces are available.

Further extension allows the algorithm to be executed in parallel with the assumption that all moves are

synchronous. Finally, an asynchronous continuous time version of the algorithm is provided.

7.2 GUARANTEES AND LIMITATIONS

The proposed algorithm does not allow rotations and train-like motion for the sake of safety and

real-world implementability. The algorithm is capable of finding a solution to any instance on a

bi-connected graph as long as a single unoccupied space is available. Any target node assignment is

feasible under the proposed algorithm, including assigning multiple robots to the same node. The

CHAPTER 7 CONCLUSION

required number of moves is O(N
3
2) on rectangular grids, when there is one unoccupied space in the

workspace. When more than a single unoccupied space is available, the required number of turns in the

synchronized case initially decreases hyperbolically, leading to significant decreases in the makespan

with introduction of only a few unoccupied spaces. Robots can plan their routes and swap-paths

independently if provided with the state of the workspace. In this case, the computational load for a

robot to decide its next move is only that of the BFS and A∗ per which is O(N logN). The asymptotic

rate for the number of moves is valid as long as the workspace consists of rectangular sections that

share at least two nodes between every intersecting pair of sections. The algorithm is shown to be

starvation-free, which means that every assigned task will eventually complete.

7.3 INTENDED USE

The algorithm is intended for use in low traffic density scenarios around ρ = 0.2, as this is where

maximum throughput is achieved. However, by virtue of the starvation-freedom guarantee, the

algorithm is robust to high traffic densities and can keep delivering products as ρ → 1, as long as a

single unoccupied space is available.

7.4 APPLICABILITY

Even though the focus is specifically on the requirements of MFS, these requirements can be seen to

be applicable to numerous real world MVS problems. The visitors’ rules for the pebble motion on

graphs are applicable to any problem where point-to-point transport is the objective.

7.5 FURTHER WORK

Optimality did not enjoy high priority in the design of the proposed algorithm. As a result, the swap-

paths frequently drive lower priority robots further away from their targets which leads to sub-optimal

behaviours. Robots could also benefit from attempting to avoid each other altogether when planning

their routes. Therefore, optimization of the proposed algorithm is a likely direction for future work. In

addition, it was reported that the asynchronous algorithm leads to noticeable oscillations in the case

where all robots are sent to the same node. Further refinement of the algorithm should be capable of

remedying this.

Department of Mechanical Systems Engineering
University of Miyazaki

72

CHAPTER 7 CONCLUSION

It is expected that the asynchronous visitors’ algorithm will be resilient to communication delays and

failures. However, communication delays and failures have not been simulated in this work and the

communications were assumed to be ideal. Future work could study the communications in more

detail.

The algorithms have not been implemented in the presence of storage pods, replenishment and picking

stations. Further work is required to realize such an implementation. Inclusion of the storage pods

presents new difficulties because robots can pass under the pods when not carrying buckets. The

swap-path planning algorithm should take into account whether a robot is carrying a storage pod or not

in order to obtain an efficient algorithm.

The current node reservation system only attempts to reserve one node ahead on the robots’ paths.

This leads to robots that stop at every node on their way to their targets. In other words, a toothed

velocity profile results from the current space reservation mechanism. This is sub-optimal from

a makespan point of view. In future work, the space reservation system can be modified so that

the robots only accelerate and decelerate when necessary so that the velocity profile is not toothed.

Furthermore, the current version of ALPHABET SOUP does not implement rotational accelerations

and velocities for the robots. This can be seen as a realistic assumption if the robots are omni-wheeled

units. However, the robots used in most industrial applications are differential drive units. Further

work could implement the differential drive dynamics of the robots in order to simulate the industrial

conditions more accurately.

Robot breakdowns were not considered in this work. The proposed algorithms could effectively treat

breakdowns by simply excluding the nodes where breakdowns are blocking the robot paths. If the

resulting graph remains bi-connected, the algorithms would be able to find a solution, otherwise a

complete algorithm is required. The presented algorithms are complete for bi-connected graphs, but are

in general not complete. Completeness is a desirable property for any multi-agent motion coordination

algorithm. The provided visitors’ rules form the basis from which complete algorithms can be derived

in future work.

Department of Mechanical Systems Engineering
University of Miyazaki

73

REFERENCES

[1] D. M. Kornhauser, G. L. Miller, and P. G. Spirakis, “Coordinating pebble motion on graphs, the

diameter of permutation groups, and applications,” Master’s thesis, M. I. T., Dept. of Electrical

Engineering and Computer Science, Cambridge, 1984.

[2] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of cooperative, autonomous

vehicles in warehouses,” AI magazine, vol. 29, no. 1, pp. 9–19, 2008.

[3] H. Andreasson, A. Bouguerra, M. Cirillo, D. N. Dimitrov, D. Driankov, L. Karlsson, A. J.

Lilienthal, F. Pecora, J. P. Saarinen, A. Sherikov, and T. Stoyanov, “Autonomous transport

vehicles: Where we are and what is missing,” IEEE Robotics Automation Magazine, vol. 22,

no. 1, pp. 64–75, March 2015.

[4] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,” IEEE spectrum, vol. 45, no. 7,

pp. 26–34, 2008.

[5] Otto motors. Clearpath Robotics, Inc. (Last accessed 2017/08/01). [Online]. Available:

https://www.ottomotors.com

[6] fetch robotics. (Last accessed 2017/08/01). [Online]. Available: http://www.fetchrobotics.com

[7] E. Ackerman. (2017, apr) Fetch robotics introduces burly new freight robots. IEEE Spectrum.

(Last accessed 2017/08/01). [Online]. Available: http://spectrum.ieee.org/automaton/robotics/

industrial-robots/fetch-robotics-introduces-burly-new-freight-robots

REFERENCES

[8] K. Bhasin and P. Clark. (2016, jun) How amazon triggered a robot arms race. Bloomberg. (Last

accessed 2017/07/19). [Online]. Available: http://www.chicagotribune.com/bluesky/technology/

ct-amazon-distribution-center-robots-20160629-story.html

[9] M. Wulfraat. (2012, feb) Is kiva systems a good fit for your distribution center? an unbiased

consultant evaluation. MWPVL International Inc. (Last accessed 2017/07/19). [Online].

Available: http://www.mwpvl.com/html/kiva_systems.html

[10] J. Slocum and E. W. Weisstein. “15 Puzzle.”. MathWorld–A Wolfram Web Resource. (Last

accessed on 2017/07/19). [Online]. Available: http://mathworld.wolfram.com/15Puzzle.html

[11] A. Adler, M. de Berg, D. Halperin, and K. Solovey, “Efficient multi-robot motion planning

for unlabeled discs in simple polygons,” Algorithmic Foundations of Robotics XI: Selected

Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics,

pp. 1–17, 2015.

[12] J. Yu and D. Rus, “Pebble motion on graphs with rotations: Efficient feasibility tests and planning

algorithms,” Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh

International Workshop on the Algorithmic Foundations of Robotics, pp. 729–746, 2015.

[13] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing cost tree search for optimal

multi-agent pathfinding,” Artificial Intelligence, vol. 195, pp. 470–495, 2013.

[14] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-

agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[15] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and rotate: a complete multi-agent

pathfinding algorithm,” Journal of Artificial Intelligence Research, vol. 51, pp. 443–492, 2014.

[16] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path planning,” Journal of Artificial

Intelligence Research, vol. 31, pp. 497–542, 2008.

Department of Mechanical Systems Engineering
University of Miyazaki

75

REFERENCES

[17] T. Lamballais, D. Roy, and M. B. M. de Koster, “Estimating performance in a robotic mobile

fulfillment system,” European Journal of Operational Research, vol. 256, no. 3, pp. 976–990,

2017.

[18] M. Mansouri, H. Andreasson, and F. Pecora, “Hybrid reasoning for multi-robot drill planning in

open-pit mines,” Acta Polytechnica, vol. 56, no. 1, pp. 47–56, 2016.

[19] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-ranging multivehicle systems:

A resource allocation paradigm,” IEEE Transactions on Robotics, vol. 27, no. 2, pp. 283–296,

2011.

[20] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group,” Journal of Combinatorial

Theory, Series B, vol. 16, no. 1, pp. 86–96, 1974.

[21] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” The International Journal of

Robotics Research, vol. 33, no. 1, pp. 82–97, 2014.

[22] P. Surynek, “Solving abstract cooperative path-finding in densely populated environments,”

Computational Intelligence, vol. 30, no. 2, pp. 402–450, 2014.

[23] W. W. Johnson and W. E. Story, “Notes on the "15" puzzle,” American Journal of Mathematics,

vol. 2, no. 4, pp. 397–404, 1879.

[24] M. Peasgood, C. Clark, and J. McPhee, “Complete and scalable multi-robot roadmap coordination

planning,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 283–292, 2008.

[25] K.-H. C. Wang and A. Botea, “Mapp: a scalable multi-agent path planning algorithm with

tractability and completeness guarantees,” Journal of Artificial Intelligence Research, vol. 42, pp.

55–90, 2011.

[26] H. Roozbehani and R. D’Andrea, “Adaptive highways on a grid,” Robotics Research, vol. 70, pp.

661–680, 2011.

Department of Mechanical Systems Engineering
University of Miyazaki

76

REFERENCES

[27] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of

minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp.

100–107, 1968.

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik,

vol. 1, no. 1, pp. 269–271, 1959.

[29] E. F. Moore, “The shortest path through a maze,” in Proceedings of the International Symposium

on the Theory of Switching. Harvard University Press, 1959, pp. 285–292.

[30] R. J. Luna and K. E. Bekris, “Push and swap: Fast cooperative path-finding with completeness

guarantees,” in Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence, 2011, pp. 294–300.

[31] M. M. Khorshid, R. C. Holte, and N. R. Sturtevant, “A polynomial-time algorithm for non-

optimal multi-agent pathfinding,” in Proceedings of the Fourth Annual Symposium on Combinat-

orial Search, 2011, pp. 76–83.

[32] P. Surynek, “Towards optimal cooperative path planning in hard setups through satisfiability

solving,” in Proceedings of the 12th Pacific Rim international conference on Trends in Artificial

Intelligence, 2012, pp. 564–576.

[33] T. S. Standley, “Finding optimal solutions to cooperative pathfinding problems,” in Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 28–29.

[34] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble motion on graphs, the diameter

of permutation groups, and applications,” in Proceedings of the 25th Annual Symposium on

Foundations of Computer Science, 1984, pp. 241–250.

[35] P. Surynek, “Mutex reasoning in cooperative path finding modeled as propositional satisfiability,”

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

2013, pp. 4326–4331.

Department of Mechanical Systems Engineering
University of Miyazaki

77

REFERENCES

[36] T. S. Standley and R. Korf, “Complete algorithms for cooperative pathfinding problems,” in

Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011, pp.

668–673.

[37] B. de Wilde, A. W. ter Mors, and C. Witteveen, “Push and rotate: cooperative multi-agent path

planning,” in Proceedings of the International Conference on Autonomous Agents and multi-agent

systems, 2013, pp. 87–94.

[38] M. R. Ryan, “Graph decomposition for efficient multi-robot path planning,” in Proceedings of

the 20th International Joint Conference on Artificial Intelligence, 2007, pp. 2003–2008.

[39] D. Ratner and M. K. Warmuth, “Finding a shortest solution for the n×n extension of the 15-

puzzle is intractable,” in Association for the Advancement of Artificial Intelligence, 1986, pp.

168–172.

[40] J. Enright and P. R. Wurman, “Optimization and coordinated autonomy in mobile fulfillment sys-

tems,” in Proceedings of the 9th AAAI Conference on Automated Action Planning for Autonomous

Mobile Robots, 2011, pp. 33–38.

[41] R. D’Andrea and P. Wurman, “Future challenges of coordinating hundreds of autonomous

vehicles in distribution facilities,” in Proceedings of the IEEE International Conference on

Technologies for Practical Robot Applications, 2008, pp. 80–83.

[42] C. J. Hazard, P. R. Wurman, and R. D’Andrea, “Alphabet soup: A testbed for studying resource

allocation in multi-vehicle systems,” in AAAI Workshop on Auction Mechanisms for Robot

Coordination, 2006, pp. 23–30. [Online]. Available: research.csc.ncsu.edu/alphabetsoup

[43] A. W. ter Mors, “Conflict-free route planning in dynamic environments,” in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 2166–2171.

[44] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-agent teams in complex

environments using rapidly-exploring random trees,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 2011, pp. 4956–4961.

Department of Mechanical Systems Engineering
University of Miyazaki

78

REFERENCES

[45] L. Kalinovcic, T. Petrovic, S. Bogdan, and V. Bobanac, “Modified banker’s algorithm for

scheduling in multi-agv systems,” in Proceedings of the IEEE International Conference on

Automation Science and Engineering, 2011, pp. 351–356.

[46] V. Bobanac and S. Bogdan, “Routing and scheduling in multi-agv systems based on dynamic

banker algorithm,” in Proceedings of the 16th Mediterranean Conference on Control and Auto-

mation, 2008, pp. 1168–1173.

[47] T. Petrovic, “Path assignment and resource allocation control in reconfigurable multi-vehicle

system,” in Proceedings of the IEEE Conference on Control Applications, 2014, pp. 1789–1794.

[48] M. Kloetzer, C. Mahulea, and J. M. Colom, “Petri net approach for deadlock prevention in robot

planning,” in Proceedings of the 18th IEEE Conference on Emerging Technologies and Factory

Automation, 2013, pp. 1–4.

[49] G. Röger and M. Helmert, “Non-optimal multi-agent pathfinding is solved (since 1984),” in

Proceedings of the Fifth Annual Symposium on Combinatorial Search, 2012, pp. 173–174.

[50] P. Surynek, “A novel approach to path planning for multiple robots in bi-connected graphs,”

in Proceedings of the IEEE International Conference on Robotics and Automation, 2009, pp.

3613–3619.

[51] J. van Den Berg, J. Snoeyink, M. C. Lin, and D. Manocha, “Centralized path planning for

multiple robots: Optimal decoupling into sequential plans,” in Robotics: Science and systems,

vol. 2, no. 2.5, 2009, pp. 2–3.

[52] P. Surynek, “Makespan optimal solving of cooperative path-finding via reductions to

propositional satisfiability,” (2016,oct), arXiv preprint. Last accessed 2017/06/10. [Online].

Available: http://arxiv.org/abs/1610.05452

[53] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hoenig, S. Kumar, T. Uras, H. Xu, C. Tovey,

and G. Sharon., “Overview: Generalizations of multi-agent path finding to real-world

Department of Mechanical Systems Engineering
University of Miyazaki

79

REFERENCES

scenarios,” (2017,feb), arXiv preprint. Last accessed 2017/07/19. [Online]. Available:

https://arxiv.org/abs/1702.05515

[54] O. Goldreich, “Finding the shortest move-sequence in the graph-generalized 15-puzzle is np-hard,”

1984, laboratory for Computer Science, Massachusetts Institute of Technology, Unpublished

manuscript.

[55] E. W. Dijkstra, “Een algorithme ter voorkoming van de dodelijke omarming,” n.d., circulated

privately. [Online]. Available: http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF

[56] M. Raynal, Concurrent Programming: Algorithms, Principles, and Foundations, 1st ed. Springer-

Verlag Berlin Heidelberg, 2013.

[57] S. S. Skiena, The Algorithm Design Manual, 2nd ed. Springer-Verlag London, 2008.

Department of Mechanical Systems Engineering
University of Miyazaki

80

ADDENDUM

ADDENDUM A ROTATIONS AND TRAIN-LIKE

MOTIONS

Recent research proposes that groups of robots on a cycle in a graph should be allowed to undergo

“rotations” [12, 15, 33, 37]. These works consider the robots to move in discrete time steps. A rotation

along a cycle is represented by an instantaneous transition from the discrete instant shown in Figure

A.1(a) to that of Figure A.1(c) for four robots. However, if the robots are represented by squares on a

grid (like for example in the 15 puzzle) this is physically not possible unless the grid cells are much

larger than the robots. Generally, the grid cells are just large enough to contain the robots as to make

efficient use of floor space and allow for reservation based collision avoidance. These difficulties arise

because robots exist not in discrete time-steps but in continuous time. Robots also occupy space, which

space can be represented by the rotation envelope with a radius r as depicted by the blue circle in

Figure 2.2(a). Therefore, the rotation along a cycle, embodied in continuous time and 2D space is

accompanied by an instant of either collision or minimum separation as shown in Figure A.1(b).

1 2

3 4

2 4

1 3

(a) Configuration before rotation

1 2

3 4

2

4 1

3

(b) Minimum separation instant

1 2

3 4

2

4

1

3

(c) Configuration after rotation

Figure A.1. Robots undergoing a rotation without space reservation

ADDENDUM A ROTATIONS AND TRAIN-LIKE MOTIONS

To analyse the separation properties of such a system of robots, consider the case where robots

occupying nodes i and j simultaneously move toward nodes j and k respectively as shown in Figure

A.2. Assuming that both robots depart at the same time and accelerate at the same rate, the distance δ

from their respective start nodes is the same for both robots.

𝑖

𝑗

𝑘

𝑙

𝑙
−
𝛿

𝛿

𝑙

𝛿

Figure A.2. Separation between two robots under simultaneous motion.

By the Pythagorean theorem, the separation s = f (δ) between the robots is given by:

s =
√

2δ 2−2lδ + l2 (A.1)

Taking the distance between nodes l as a constant, Equation (A.1) can be viewed as the square root of

a second order polynomial. By inspection, the polynomial is convex and therefore has a minimum in

the interval δ ∈ (0, l). To find the minimum of s, the derivative is taken:

ds
dδ

=
2δ − l√

2δ 2−2lδ + l2
(A.2)

The minimum separation smin occurs at δ ∗, which is found by setting ds
dδ

= 0→ δ ∗ = 1
2 l. Substituting

δ ∗ into Equation (A.1) leads to smin =
√

1
2 l.

Assuming that all robots have a rotation envelope with radius r, in order to avoid collisions it needs

to be ensured that s(δ)> 2r,δ ∈ [0, l]. Therefore smin > 2r→ l > 2
3
2 r. If a h×w grid that allows for

rotations is desired, the minimum required area A′ is given as:

A′ = (w2
3
2 r)(h2

3
2 r) (A.3)

A′ = 23r2wh (A.4)

Department of Mechanical Systems Engineering
University of Miyazaki

83

ADDENDUM A ROTATIONS AND TRAIN-LIKE MOTIONS

Conversely, if rotations are not allowed, the required area becomes:

A = (w2r)(h2r) (A.5)

A = 22r2wh (A.6)

It is therefore clear that

A′ = 2A (A.7)

This shows that at least double the area is required to allow rotations without collisions. In order to

visualize the magnitude of the difference in space requirements, Figures A.2 and A.3 are drawn to scale

with respect to each other and have the same envelope radius r. Warehouse floor space is a valuable

asset which should be efficiently utilized; therefore, allowing rotations is costly in this regard.

In order to enable rotations as in Figure A.2, the reservation strategy must be abandoned: robots

are allowed to approach nodes that are occupied or being deserted by other robots. This introduces

serious risks and technical difficulties in order to ensure safety: precise tracking performance would

be required in the case of a centralized control strategy. On the other hand, the reservation based

collision avoidance strategy has proven itself to be technically feasible and safe. Similarly, other

research [22] assumes train-like motions where robots can move along a straight line without requiring

an unoccupied space. The reservation based collision avoidance strategy does not allow for rotations

or train-like motions as it requires a cell to be empty before it can be reserved.

1 2

3 4

2

1 3

(a) turn = 0

1 2

3 4

2

1 3

(b) turn = 1

1 2

3 4

2 1

3

(c) turn = 2

1 2

3 4

2 1

3

(d) turn = 3

Figure A.3. Robots progressing along a graph cycle with space reservation.

Department of Mechanical Systems Engineering
University of Miyazaki

84

ADDENDUM B COMPLEXITY ON RECTANGULAR

GRIDS

The proposed algorithm in Chapter 3 provides a solution to the visitors’ puzzle on a h×w grid with

one unoccupied node. The grid is shown in Figure B.1. The upper bound on the number of moves

required to solve a specific instance of this puzzle is of interest, as it governs the worst-case required

time to complete a given task assignment in industrial applications.

1 2 3 4

5 6 7 8

9 10 11 12

13

14

15

𝑤 − 1

ℎ
−
1

𝐴

𝐵

Figure B.1. w×h grid and its diameter.

The number of nodes N on the grid is:

N = wh (B.1)

The diameter d of a graph is the longest shortest path in the graph. The diameter of a grid, shown as

the red path in Figure B.1, is given as:

d = h+w−2 (B.2)

The aspect ratio a of the grid is defined as:

a = h/w (B.3)

ADDENDUM B COMPLEXITY ON RECTANGULAR GRIDS

Substitution of Equation B.3 in Equations B.2 and B.1 yields:

d = w(1+a)−2, (B.4)

and w = a
1
2 N

1
2 (B.5)

which leads to:

d = N
1
2 (a−

1
2 +a

1
2)−2 (B.6)

For an arbitrary robot ri, the distance to move from its starting node to its destination node is denoted

as gr. In the worst case, every ri has to travel the entire distance d, thus gr is given by:

gr = (d−1)+ cd (B.7)

The first term in Equation B.7 is the cost associated with moving the swap-space onto the first node

in ri’s route. The second term accounts for moving ri along its route. The coefficient c accounts for

the moves associated with repeatedly circumventing ri to get the swap-space back onto ri’s route after

each of its moves. The grid is represented by the graph G(V,E). Let G′ be such that:

G′ = G−{n} (B.8)

where n ∈V . Let P be the shortest path in G′ between any of n’s neighbours in G. For a four-connected

grid, the property holds that |P|<= 4. Because c = 1+ |P|, it follows that, for any rectangular grid, it

is valid to assume:

c = O(1) (B.9)

The number of robots on the grid is denoted as k. The maximum number of moves g to get k robots

from their start to destination vertices is therefore given as:

g = kgr (B.10)

In the worst case, the traffic density is very high and there is only one unoccupied node on the grid,

which gives k = N−1. By substitution, this leads to:

g = (N
3
2 −N

1
2)(a−

1
2 +a

1
2)(1+ c)−N(2c+3)+2c+3 (B.11)

which clearly shows that:

g = O(N
3
2) (B.12)

Department of Mechanical Systems Engineering
University of Miyazaki

86

ADDENDUM C COMPLEXITY ON MAPS

COMPOSED OF RECTANGULAR

GRIDS

Consider a warehouse floor composed of ns rectangular sections. Two sections are said to intersect

each other if they share at least one node. An arbitrary section is denoted by si. The smallest allowed

dimensions of a sub-section are w≥ 2,h≥ 2. Assume all pairs {si,s j|i 6= j} of intersecting sections

share at least two nodes as shown in Figure C.1, then the assumption shown in Equation (B.9) that

c = O(1) holds.

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

Figure C.1. A warehouse map composed of multiple rectangular grids

Each si consists of ni nodes, has a diameter of di and aspect ratio ai. The diameter of the composite

graph consisting of all si is D. The diameter of a graph composed of rectangular grids is always smaller

than the sum of the diameters of the grids:

D≤
ns

∑
i=1

di (C.1)

ADDENDUM C COMPLEXITY ON MAPS COMPOSED OF RECTANGULAR GRIDS

Where di is given by Equation (B.6) with addition of the subscript. The total number of nodes in G is

N:

N =
ns

∑
i=1

ni (C.2)

The number of nodes in si is a fraction fi of N, which can be written as:

ni = fiN (C.3)

Previously, Equation (B.6) showed for a single rectangular grid:

d = N
1
2 (a−

1
2 +a

1
2)−2 (C.4)

Adapting Equation (C.4) for the diameter of a section and substitution of Equation (C.3) gives:

di = N
1
2 fi(a

− 1
2

i +a
1
2
i)−2 (C.5)

Whereby Equation (C.1) can be re-written as:

D≤ N
1
2

ns

∑
i=1

fi(a
− 1

2
i +a

1
2
i)−2ns (C.6)

Previously for a single rectangular grid, it was shown in Equation (B.7) that the cost to move a single

robot from its start to its destination is in the worst case given by:

gr = (d−1)+ cd (C.7)

From the knowledge of Equation (C.1), in this case Equation (C.7) becomes :

gr ≤ (D−1)+ cD (C.8)

Equation (B.10) remains unchanged:

g = kgr (C.9)

Substitution of Equation (C.8) into Equation (C.9) and letting k = N−1 yields:

g≤ (N−1)(D(1+ c)−1) (C.10)

By substitution of Equation (C.6), this finally gives:

g≤ (N
3
2 −N

1
2)(1+ c)

ns

∑
i=1

fi(a
− 1

2
i +a

1
2
i)−N +1 (C.11)

Which is O(N
3
2). This shows that the complexity of the proposed algorithm in Chapter 3 is the same

for rectangular grids and any graph composed of multiple rectangular grids such that all pairs of

intersecting sections share at least two nodes.

Department of Mechanical Systems Engineering
University of Miyazaki

88

ADDENDUM D COMPLETENESS

Consider the case where there is a graph G(V,E) with N nodes and k = N−1 robots at distinct vertices

∈V . G consists of two intersecting bi-connected components s1 and s2. In Figure D.1(a), suppose that

a robot is attempting to move from a vertex v2 in section s2 to a vertex v1 in s1, such that v1,v2 6= vi,

using the algorithm in Chapter 3. If the robot is at vertex vi on its way to a vertex in s1, but s1 has

no swap-space, then the robot will attempt to move a swap space into s1 from s2. However, the

swap-path may not pass through vertex vi as this would reverse the robot’s progress. The robot thus

considers G−{vi}, which is a disconnected graph, when planning the swap-path. Because s1−{vi}

and s2−{vi} are the two connected components of G−{vi}, there exists no path between them. The

robot is therefore stuck at vi and the algorithm has failed.

𝑣𝑖

1 2 3

5 6 7

𝑠1

𝑠2

(a) A graph that is not bi-connected

1 2 3

5 6 7

𝑣𝑖

𝑣𝑗

𝑠2

𝑠1

(b) A biconnected graph

Figure D.1. Singly connected and biconnected graphs

Conversely, if s1 and s2 share at least two vertices vi and v j, for any vertex vm ∈V , the graph G−{vm}

is connected and a swap-path will always be found for the swap-space between any pair of sub-graphs

in G. This is the definition of a bi-connected graph and the proposed algorithm is thus complete for

bi-connected graphs.

ADDENDUM E TIME COMPLEXITY OF THE SERIES

AND PARALLEL ALGORITHMS

Measuring the time taken to solve the same size experiments using the series and parallel visitors’

algorithms yields significantly different run times. The differences are the result of the re-calculation

of the swap-paths and routes in every turn for every robot in the parallel algorithm. In this section, the

asymptotic rates for both algorithms are analysed in order to understand how they scale with regards to

their input size.

E.1 TIME COMPLEXITY OF BFS

The complexity of BFS can be written as:

gBFS = O(|V |+ |E|) (E.1)

where |V | and |E| are the cardinalities of the vertex and edge sets respectively. On rectangular grids of

dimension h×w, the number of vertices:

|V |= wh (E.2)

= N (E.3)

and number of edges:

|E|= w(h−1)+(w−1)h (E.4)

= 2wh−w−h (E.5)

ADDENDUM E TIME COMPLEXITY OF THE SERIES AND PARALLEL ALGORITHMS

By manipulation of the definition of the aspect ratio, given in Equation (B.3):

h = aw (E.6)

w = a−
1
2 N

1
2 (E.7)

∴ |E|= 2N−N
1
2 (a−

1
2 +a

1
2) (E.8)

and |E|= O(N) (E.9)

which gives:

gBFS = O(N +O(N)) (E.10)

= O(N) (E.11)

E.2 TIME COMPLEXITY OF A∗

In the worst case, the time complexity of A∗ is equivalent to Dijkstra’s algorithm [28]. In the case

where A∗ is implemented using a priority queue and the graph is represented as a adjacency list, the

time complexity of A∗ can be written as:

gA∗ = O((|V |+ |E|) log |V |) (E.12)

By noting that both |V |, |E|= O(N), this becomes:

gA∗ = N logN (E.13)

E.3 TIME COMPLEXITY OF THE SERIES VISITORS’ ALGORITHM

In the case where the k = N−1, the order of the number of robots is:

gk = O(N) (E.14)

By inspection of Equation (B.6), taking the length of the robot’s path to be equal to the diameter of the

grid gives the order of the length of the path:

gd = O(N
1
2) (E.15)

For the series visitors’ algorithm, the cost of A∗ is incurred once per robot. The cost of BFS is incurred

for every node along the robot’s path. The complexity of the series algorithm can therefore be written

Department of Mechanical Systems Engineering
University of Miyazaki

91

ADDENDUM E TIME COMPLEXITY OF THE SERIES AND PARALLEL ALGORITHMS

as:

gseries = gk(gA∗+gdgBFS) (E.16)

= O(N)(N logN +O(N
1
2)O(N)) (E.17)

= O(N5/2) (E.18)

E.4 TIME COMPLEXITY OF THE PARALLEL VISITORS’ ALGORITHM

The number of turns is equal to the number of moves when k = N−1 and, therefore, the scaling of the

number of turns is given as:

gturns = O(N3/2) (E.19)

For the parallel algorithm, the cost of the BFS and A∗ is incurred for every robot in every turn. The

asymptotic rate for the parallel algorithm therefore becomes:

gparallel = gkgturns(gA∗+gBFS) (E.20)

= O(N)O(N
3
2)(N logN +O(N)) (E.21)

= O(N
7
2 logN) (E.22)

Department of Mechanical Systems Engineering
University of Miyazaki

92

